Solving 2x2 go

The program below (download) solves the game of Go played on a 2x2 board using area rules and positional superko. It demonstrates the enormous importance of good move ordering in exhaustive alpha beta search. With the given ordering of passing first, only 1446 nodes are searched, to a depth of no more than 22. But trying passes after moves requires the search of as many as 19397529 nodes, to a depth of 58. Minimax, which doesn't depend on move ordering, takes over a week while searching a few trillion nodes.


/* C program to solve 2x2 go with area rules and positional superko */
/* note that suicide is not possible in this case */
/* trying moves before passes slows search dramatically */

#include <stdio.h>
#define NSHOW 4
#define NMOVES 4
#define CUT 1   /* 0 for plain minimax */

char h[256];   /* bitmap of positions in game history */
int nodes[99]; /* number of nodes visited at each depth */
long ngames;

void show(int n, int black, int white, int alpha, int beta, int passed)
  /* print 2-line ascii representation of position */
{
  int i;
  printf("%d (%d,%d)%s\n", n, alpha, beta, passed?" pass":"");
  for (i=0; i<4; i++) {
    printf(" %c", ".XO#"[(black>>i&1)+2*(white>>i&1)]);
    if (i&1)
      putchar('\n');
  }
}

void visit(int black, int white)
{
  h[black +16* white] = 1;
}

void unvisit(int black, int white)
{
  h[black +16* white] = 0;
}

int visited(int black, int white)
{
  return h[black +16* white];
}

int owns(int bb)
{
  return bb == (1|8) || bb == (2|4);
}

int popcnt[16] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}; /* number of 1 bits */

int score(int black, int white)
{
  ngames++;
  if (black==0)
    return white ? -4 : 0;
  if (white==0)
    return 4;
  else return popcnt[black]-popcnt[white];
}

int xhasmove(int black, int white, int move, int *newblack, int *newwhite)
{
  move = 1<<move;
  if ((black|white)&move || popcnt[black]==3 || owns(white))
    return 0;
  *newblack = black|move;
  *newwhite = (*newblack|white)==15 || owns(*newblack) ? 0 : white;
  return !visited(*newblack,*newwhite);
}

int ohasmove(int black, int white, int move, int *newblack, int *newwhite)
{
  move = 1<<move;
  if ((black|white)&move || popcnt[white]==3 || owns(black))
    return 0;
  *newwhite = white|move;
  *newblack = (*newwhite|black)==15 || owns(*newwhite) ? 0 : black;
  return !visited(*newblack,*newwhite);
}

int xab(int n, int black, int white, int alpha, int beta, int passed)
{
  int i,s,newblack,newwhite;
  int oab(int, int, int, int, int, int);

  nodes[n]++;
  if (n<NSHOW)
    show(n,black,white,alpha,beta,passed);

  s = passed ? score(black, white) : oab(n+1,black,white,alpha,beta,1);
  if (s > alpha && (alpha=s) >= beta && CUT) return alpha;

  for (i=0; i<NMOVES; i++) {
    if (xhasmove(black,white,i,&newblack,&newwhite)) {
      visit(newblack,newwhite);
      s = oab(n+1, newblack, newwhite, alpha, beta, 0);
      unvisit(newblack,newwhite);
      if (s > alpha && (alpha=s) >= beta && CUT) return alpha;
    }
  }

  return alpha;
}

int oab(int n, int black, int white, int alpha, int beta, int passed)
{
  int i,s,newblack,newwhite;

  nodes[n]++;
  if (n<NSHOW)
    show(n,black,white,alpha,beta,passed);

  s = passed ? score(black, white) : xab(n+1,black,white,alpha,beta,1);
  if (s < beta && (beta=s) <= alpha && CUT) return beta;

  for (i=0; i<NMOVES; i++) {
    if (ohasmove(black,white,i,&newblack,&newwhite)) {
      visit(newblack,newwhite);
      s = xab(n+1, newblack, newwhite, alpha, beta, 0);
      unvisit(newblack,newwhite);
      if (s < beta && (beta=s) <= alpha && CUT) return beta;
    }
  }

  return beta;
}

int main()
{
  int i,c,s;
  c = xab(0, 0, 0, -4, 4, 0);
  for (i=s=0; nodes[i]; i++) {
    s += nodes[i];
    printf("%d: %d\n", i, nodes[i]);
  }
  printf("total: %d\nngames: %ld\nx wins by %d\n", s, ngames, c);
  return 0;
}