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Abstrat. In the game of Go, the question of whether a ladder|a

method of apturing stones|works, is shown to be PSPACE-omplete.

Our redution losely follows that of Lihtenstein and Sipser [LS80℄, who

�rst showed PSPACE-hardness of Go by letting the outome of a game

depend on the apture of a large group of stones. We ahieve greater

simpliity by avoiding the need for pipes and rossovers.

1 Introdution

Consider the following Go

1

problem: Blak to apture the marked white stone

1

details of the rules may be found at http://www.wi.nl/~tromp/go.html.
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We will show how this position enodes the Quanti�ed Boolean Formula

(QBF) 8x9y(x _ y) ^ (:x _ :y). Sine this formula is true, the ladder should

work, as the reader may verify.

The problem of deiding the truth of QBF is omplete for the lass PSPACE

of all problems that an be deided using an amount of spae that is polynomial

in the length of the input (see Theorem 7.10 of [GJ79℄). Completeness means

that not only is QBF in the lass PSPACE, but that every other problem in

this lass an be eÆiently (in polynomial time) redued to QBF, so that QBF

is, essentially, a hardest problem in PSPACE. For many games, we an onsider

the problem of whether a position on an arbitrarily large board (say, n by n)

is a win for the player to move. This an usually be determined by a reursive

searh, whih uses spae proportional to the produt of board desription size

and the maximum length of the game. The former is ertainly polynomial and

the latter quite often is too. Those games are therefore in PSPACE, and showing

ompleteness of suh a game establishes that there is some intrinsi hardness to

the game. E.g. there an be no `shortuts' by whih the results of a position

an be omputed eÆiently, in polynomial time, if we aept the widely held

belief that the lass P of polynomial time solvable problems is a strit subset of

PSPACE.

Our main result is

Theorem 1 LADDERS is PSPACE-omplete.

We formalize the game of Go and the ladder problem as follows:

GO: Given a position on an arbitrarily-sized Go board, does Blak have a win-

ning strategy?

LADDERS : Given a position on an arbitrarily-sized Go board, and a white

group with 2 liberties, an Blak keep putting white in atari|that is, redue

white to 1 liberty|until apture?

As shown by Lihtenstein and Sipser [LS80℄, one an onstrut positions in

whih blak vitory hinges upon the survival of a very large eyeless white group,

that Blak has almost entirely surrounded. To survive, it needs to onnet to a 2-

eyed group through a struture of pipes and juntions that an be modeled after

a Quanti�ed Boolean Formula. This proved GO to be PSPACE hard. Robson

[R83℄ used the same idea but introdued a olletion of ko's into the struture,

so that the large group ould onnet out only if its owner held an appropriate

subset of all the ko's. Suh ko-games were shown to be EXPTIME-omplete.

But even though the owner of the large group might not be able to obtain an

appropriate subset of ko's, he might be able to keep yling through the ko's,

so that the outome of the game depends on the exat rule dealing with board-

repetition. Robson assumed a basi ko rule only forbidding immediate reapture

in a ko thereby establishing EXPTIME-ompleteness of the question whether an

arbitrary position is a fored win for Blak or not. An interesting open problem

onerns the omplexity of Go with the superko rule that forbids the whole board

position from repeating, whih exludes the possibility of an in�nite yle.
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Both onstrutions employ pipes, a pipe being a line of white stones sand-

wihed between 2 lines of blak stones. Pipes are essential in ontaining the ow

of play between the other gadgets (similar to the ones we will introdue) used in

the onstrutions. A disadvantage of pipes is that they take up spae, and thus

annot simply ross on a Go board. Both Robson (diretly), and Lihtenstein

and Sipser (indiretly; at the oneptually higher level of graphs), onstruted in-

genious but somewhat ompliated pipe-intersetions. How muh easier it would

be to model play not as a ow to be ontained but as light that travels unaided

through empty spae; bent by mirrors where need be.

2 Enter the ladder

One of the �rst aspets of the game that beginners familiarize themselves with,

the ladder (Figure 1) is a straightforwardmethod of apturing stones by repeated

atari on alternate sides. As shown in diagram L2, the ladder travels diagonally

aross the board and its fate will depend on what meets its path. A ladder will

work, i.e. result in apture, if it either hits the edge of the board, or an existing

solitary blak stone, as in diagram W2. It will fail if it hits or borders on a

solitary white stone, as in diagram F2. In that ase White's move at 12 puts the

blak stone at 9 in atari, and if Blak persists at 13, White aptures her way

to freedom. There are of ourse many more ompliated situations where the

ladder approahes both blak and white stones in eah others viinity, or where

these stones are short on liberties. There we annot easily determine whether the

ladder works. In fat we will exploit these possibilities in our own onstrution.

Ladders are fored sequenes that an run all aross the board, ausing plays

in one area of the board to a�et other, remote areas. Ladders are also ubiquitous

in Go; they ome up many times per game, if not in atual play then at least in

the variations that a player onsiders to deide on his next move.

We show how ladders an take the plae of pipes in onstruting hard apture

problems.

3 Of Forks, Joins, and Mirrors

Our introdutory ladder problem features the four di�erent gadgets listed in

Figure 2: the blak hoie (B), the white hoie (W), the join (J) and the mirror

(M) (for oniseness a blak hoie is partially merged with the join to its right

in the entre of the problem).

In diagram B1, we see a Blak hoie gadget with a projeted ladder ap-

proahing from the top left. When Blak plays the ladder, he'll have a hoie

of playing move 9 on the right or the left of White, leading respetively to dia-

gram B2 or B3. From Blak's viewpoint, the top-left ladder works if either the

bottom-left ladder in B2, or bottom-right ladder in B3, work.

In diagram W1, we see a White hoie gadget with a projeted ladder ap-

proahing from the top left. When Blak plays the ladder, white's move 10

puts the marked blak stone in atari, and Blak must play above it to prevent
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Fig. 1. various ladders

White from getting too many liberties. Now White an hoose to either apture

the marked stone, or extend to the right, leading respetively to diagram W2

or W3. Blak's moves 15 and 17 in diagram W2 are needed to route the ladder

around the rightmost white stone, whih would otherwise interfere. From Blak's

viewpoint, the top-left ladder works if both the right-down ladder in W2, and

right-up ladder in W3, work.

In diagram J1, we see a Join gadget with projeted ladders approahing from

the top left and top right. Diagram J2 shows what happens with a ladder from

the top left. The fored sequene ends with the ladder ontinuing to the bottom

left. Diagram J3 shows the symmetrial ase of a ladder from the top right. From

Blak's viewpoint, either top ladder works if the bottom-left ladder does.

Finally, in diagram M1, we see a Mirror gadget with a projeted ladder

approahing from the top left. When Blak plays the ladder, he is fored to send

it bak up with move 11. Mirrors allow us to diret ladders from one gadget to

the next.
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3.1 Problem Analysis

Figure 3 shows a line of play in our original problem.

a

T

F

b

d

u

Fig. 3. a fored line apart from hoies `a' and `b'

This line of play is entirely fored exept for White's hoie of playing `a'

and Blak's hoie of playing `b'. If we let boolean variable x represent whether

White hose to send the ladder up, and let y represent whether Blak hose to

send the ladder up, then the urrent line of play orresponds to setting (x; y) =

(true; false). In general we have for eah variable a hoie gadget, an upper

and lower mirror, and a join gadget, positioned at the orners of an imaginary

diamond shape. The setting of the variable determines whih (upper or lower)

edges of the diamond get overed and whih get exposed. All gadgets are plaed

suÆiently far apart to ensure their orret operation. (Reall that this spei�

instane di�ers from the general one in that we saved some spae by merging a

Join and Blak hoie gadget in the entre.)
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Now onsider the top blak hoie gadget. If play arrives here and the ladder

leaves to the bottom-left (T), then it works if and only if x is true. If it leaves

to the bottom-right, then it works if and only if y is true. It follows that the

ladder going up from White's hoie at `u'|whih after bouning o� 2 mirrors

enters the top blak hoie gadget|works if x _ y holds. Similarly, the ladder

going down from White's hoie at `d' works if :x_:y holds. Hene, after both

variables have been set, the ladder works if (x_y)^(:x_:y). This shows that our

original problem indeed enodes the truth of the formula 8x9y(x_y)^(:x_:y),

To prove Theorem 1, i.e. PSPACE-ompleteness, we must show two things:

�rst, that LADDERS belongs to PSPACE, and seond, that QBF (known to

be PSPACE-omplete) redues to LADDERS.

3.2 LADDERS 2 PSPACE

Membership in PSPACE would follow if apturability an be determined by a

polynomial-depth-limited searh. As long as white keeps adding stones to his

group, the searh must reah an end before the group beomes bigger than the

whole board. Consider then a line of play where instead, white on his move

always aptures some blak stones to gain extra liberties. Sine the searh ends

in failure for Blak when white gains 2 liberties (for a total of 3), we may assume

that only one stone of eah aptured blak group is adjaent to White's group.

Let us analyze how many times blak an replay on that point.

If White aptured 2 or more stones, and Blak replays on the liberty, then

White an reapture and either Blak's 2nd replay is suiide, or it aptures white

in a `snapbak' (Figure 3.2, diagram A), both settling the situation.

CA B
Fig. 4. 3 types of reapturing

If White aptured 1 stone, then Blak an only replay there by apturing

White's stone bak. If the latter aptures multiple White stones, then White

an reapture too and settle the situation (Figure 3.2, diagram B). If instead

Blak aptures just the one White stone, then the reaptures an ontinue bak

and forth, a situation known as `ko' (Figure 3.2, diagram C).
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The rules of go forbid taking bak immediately in a ko, sine this rereates

the position of 2 moves bak. The stronger \superko" rule forbids repetition of

any earlier position, but this rule is not universally aepted as opposed to the

basi ko rule above.

Now, if there are at least 4 kos adjaent to the ladder, then White, in atari,

has at least 3 hoies of where to apture, while Blak has only 2 hoies of

apture. Under the basi ko rule, this allows both players to yle forever, while

the superko rule forbids Blak �rst. In both ases the searh ends in failure for

Blak.

With at most 3 kos, there are at most 6 on�gurations (001, 010, 011, 100,

101, 110, aording to what player holds whih kos). Figure 3.2 shows an example

where the ladder runs into a suh a \triple ko". With superko, White will be

forbidden to yle in this ase (examples of superko forbidding Blak are equally

well possible) and the ladder works, but without superko, it will yle forever

and Blak fails.

In onlusion, White an temporarily avoid extending his group by aptures

but one all non-ko situations are settled, then this is only possible by starting

multiple kos. If White an start enough then he prevails, else the result is de-

termined by the exat ko rules. Alltogether, White needs to extend his group

at least one every 6 times boardsize moves, so the searh may be limited to a

depth of 6 times boardsize squared, showing that LADDERS is in PSPACE.

1
2 4

3
5

6 8

7

Fig. 5. A ladder depending on a triple ko

3.3 QBF redues to LADDERS

Consider the standard PSPACE-omplete problem

QBF: Given a quanti�ed boolean formula F = Q

1

x

1

Q

2

x

2

: : : Q

n

x

n

E, where E

is a Boolean expression involving x

1

; : : : ; x

n

and eah Q

i

is either \8" or \9",

determine if F is true.
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We show how to redue QBF to LADDERS by way of the example

9x8y9z(:x ^ :y) _ (:x ^ y) _ (:z ^ (:x _ z)):
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Fig. 6. shemati of ladder instane 9x8y9z(x^ :y) _ (:x ^ y) _ (:z ^ (:x _ z))

The onstrution for this example is illustrated in Figure 6. The sequene of

diamonds is similar to that in the opening problem, with a Blak hoie gadget

for eah 9 quanti�er, and a White hoie gadget for eah 8. The size of eah

diamond is made proportional to the maximum of the number of positive and

the number of negative ouranes of the orresponding variable, so that we

an have a disjoint inoming ladder for eah ourane. Inside eah diamond we

plae extra white stones to at as ladderbreakers. This ensures the failing of any

inoming ladder an the unovered side of the diamond. Next, to the right of the

last diamond, the boolean expression is laid out. Eah _ is mapped to a Blak

hoie gadget, and eah ^ to a White hoie gadget. The two subexpressions are

then reursively laid out to the upper right, and lower right, spaed suÆiently

apart to allow for disjoint ladders. At the leaves we plae mirrors direting the

ladder to the appropriate diamond. Ladder-paths are free to interset sine the
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atual line of play an only follow one path bak to a diamond. It should be

obvious how to apply this method to any formula in QBF.

As explained in setion 3, the ladder thus onstruted works if and only if

the formula is true.

4 Conlusions

For the �rst time, we have identi�ed a natural aspet of the game of Go|

the ladder|whih is not only PSPACE hard, but PSPACE-omplete. This may

surprise many Go players who think reading out ladders is an elementary exerise

in visualization.

Our redution improves on that of Lihtenstein and Sipser [LS80℄ in simpliity

(by avoiding the need for intersetion gadgets), eonomy (using a number of

stones only linear in formula size), and aestheti appeal (the opening problem

would not look out of plae in a go magazine).
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