Ladders are PSPACE-complete

Marcel Cragsmaru! and John Tromp?

! Department of Mathematical and Computing Science,
Tokyo Institute of Technology,
2-12-1 Oo-okayama, Meguro-ku, Tokyo, Japan, 152,
marcel@is.titech.ac.jp
> CWI
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
tromp@cwi.nl

Abstract. In the game of Go, the question of whether a ladder—a
method of capturing stones—works, is shown to be PSPACE-complete.
Our reduction closely follows that of Lichtenstein and Sipser [LS80], who
first showed PSPACE-hardness of Go by letting the outcome of a game
depend on the capture of a large group of stones. We achieve greater
simplicity by avoiding the need for pipes and crossovers.

1 Introduction

Consider the following Go' problem: Black to capture the marked white stone

Q@@
o0 S R I
= X J O Q@@ :
00 Y o0 RN N S S
® T T e e T e e ot it o S S .
[X&) S R
o : O
[J (X] 00 OO
oF J O OO0+ @+0O (G200 e
O (X J o0 @
[J woi Q- @O
= o @
~0O0 [J QO i : of J
= X J O (X J e O @)
- .O ,,,,,,
O e e
CY) e

! details of the rules may be found at http://www.cwi.nl/ tromp/go.html.

II

We will show how this position encodes the Quantified Boolean Formula
(QBF) VzIy(z V y) A (-z V —y). Since this formula is true, the ladder should
work, as the reader may verify.

The problem of deciding the truth of QBF is complete for the class PSPACE
of all problems that can be decided using an amount of space that is polynomial
in the length of the input (see Theorem 7.10 of [GJ79]). Completeness means
that not only is QBF in the class PSPACE, but that every other problem in
this class can be efficiently (in polynomial time) reduced to QBF, so that QBF
is, essentially, a hardest problem in PSPACE. For many games, we can consider
the problem of whether a position on an arbitrarily large board (say, n by n)
is a win for the player to move. This can usually be determined by a recursive
search, which uses space proportional to the product of board description size
and the maximum length of the game. The former is certainly polynomial and
the latter quite often is too. Those games are therefore in PSPACE, and showing
completeness of such a game establishes that there is some intrinsic hardness to
the game. E.g. there can be no ‘shortcuts’ by which the results of a position
can be computed efficiently, in polynomial time, if we accept the widely held
belief that the class P of polynomial time solvable problems is a strict subset of
PSPACE.

Our main result is

Theorem 1 LADDERS is PSPACE-complete.

We formalize the game of Go and the ladder problem as follows:

GO: Given a position on an arbitrarily-sized Go board, does Black have a win-
ning strategy?

LADDERS : Given a position on an arbitrarily-sized Go board, and a white
group with 2 liberties, can Black keep putting white in atari—that is, reduce
white to 1 liberty—until capture?

As shown by Lichtenstein and Sipser [LS80], one can construct positions in
which black victory hinges upon the survival of a very large eyeless white group,
that Black has almost entirely surrounded. To survive, it needs to connect to a 2-
eyed group through a structure of pipes and junctions that can be modeled after
a Quantified Boolean Formula. This proved GO to be PSPACE hard. Robson
[R83] used the same idea but introduced a collection of ko’s into the structure,
so that the large group could connect out only if its owner held an appropriate
subset of all the ko’s. Such ko-games were shown to be EXPTIME-complete.
But even though the owner of the large group might not be able to obtain an
appropriate subset of ko’s, he might be able to keep cycling through the ko’s,
so that the outcome of the game depends on the exact rule dealing with board-
repetition. Robson assumed a basic ko rule only forbidding immediate recapture
in a ko thereby establishing EXPTIME-completeness of the question whether an
arbitrary position is a forced win for Black or not. An interesting open problem
concerns the complexity of Go with the superko rule that forbids the whole board
position from repeating, which excludes the possibility of an infinite cycle.

II1

Both constructions employ pipes, a pipe being a line of white stones sand-
wiched between 2 lines of black stones. Pipes are essential in containing the flow
of play between the other gadgets (similar to the ones we will introduce) used in
the constructions. A disadvantage of pipes is that they take up space, and thus
cannot simply cross on a Go board. Both Robson (directly), and Lichtenstein
and Sipser (indirectly; at the conceptually higher level of graphs), constructed in-
genious but somewhat complicated pipe-intersections. How much easier it would
be to model play not as a flow to be contained but as light that travels unaided
through empty space; bent by mirrors where need be.

2 Enter the ladder

One of the first aspects of the game that beginners familiarize themselves with,
the ladder (Figure 1) is a straightforward method of capturing stones by repeated
atari on alternate sides. As shown in diagram L2, the ladder travels diagonally
across the board and its fate will depend on what meets its path. A ladder will
work, i.e. result in capture, if it either hits the edge of the board, or an existing
solitary black stone, as in diagram W2. It will fail if it hits or borders on a
solitary white stone, as in diagram F2. In that case White’s move at 12 puts the
black stone at 9 in atari, and if Black persists at 13, White captures her way
to freedom. There are of course many more complicated situations where the
ladder approaches both black and white stones in each others vicinity, or where
these stones are short on liberties. There we cannot easily determine whether the
ladder works. In fact we will exploit these possibilities in our own construction.

Ladders are forced sequences that can run all across the board, causing plays
in one area of the board to affect other, remote areas. Ladders are also ubiquitous
in Go; they come up many times per game, if not in actual play then at least in
the variations that a player considers to decide on his next move.

We show how ladders can take the place of pipes in constructing hard capture
problems.

3 Of Forks, Joins, and Mirrors

Our introductory ladder problem features the four different gadgets listed in
Figure 2: the black choice (B), the white choice (W), the join (J) and the mirror
(M) (for conciseness a black choice is partially merged with the join to its right
in the centre of the problem).

In diagram B1, we see a Black choice gadget with a projected ladder ap-
proaching from the top left. When Black plays the ladder, he’ll have a choice
of playing move 9 on the right or the left of White, leading respectively to dia-
gram B2 or B3. From Black’s viewpoint, the top-left ladder works if either the
bottom-left ladder in B2, or bottom-right ladder in B3, work.

In diagram W1, we see a White choice gadget with a projected ladder ap-
proaching from the top left. When Black plays the ladder, white’s move 10
puts the marked black stone in atari, and Black must play above it to prevent

v

working

L1 W1 F1

o @
eCe. eCo
0200 0200w
S evve 00000

@ VD@

L2 W2 F

N

Fig. 1. various ladders

White from getting too many liberties. Now White can choose to either capture
the marked stone, or extend to the right, leading respectively to diagram W2
or W3. Black’s moves 15 and 17 in diagram W2 are needed to route the ladder
around the rightmost white stone, which would otherwise interfere. From Black’s
viewpoint, the top-left ladder works if both the right-down ladder in W2, and
right-up ladder in W3, work.

In diagram J1, we see a Join gadget with projected ladders approaching from
the top left and top right. Diagram J2 shows what happens with a ladder from
the top left. The forced sequence ends with the ladder continuing to the bottom
left. Diagram J3 shows the symmetrical case of a ladder from the top right. From
Black’s viewpoint, either top ladder works if the bottom-left ladder does.

Finally, in diagram M1, we see a Mirror gadget with a projected ladder
approaching from the top left. When Black plays the ladder, he is forced to send
it back up with move 11. Mirrors allow us to direct ladders from one gadget to
the next.

Black choice White choice

00©®0

0v0e
VOO0

GLOO-

©®

B2

o] ;)

| JOIGY “ SEEES

0®0O0

“evue

| J

B3

o
- RORON)

o
- EOROF -

60 01O
PHOe 0000
O0®O - @O@®
0OB® o e
@@ Qwe
© a0 @
W2 J2

® 0o
00U 00O
PHOe 0010
O0® O | JOI =
0O o e
@ Qwe
B B B @ B
W3 33

Fig. 2. ladder gadgets

Mirror

-]
@O
O@e®
0o
O\
BREeO
: @@

M2

VI

3.1 Problem Analysis

Figure 3 shows a line of play in our original problem.

. 1,.,1
- @O0O@®
@00

Fig. 3. a forced line apart from choices ‘a’ and ‘b’

This line of play is entirely forced except for White’s choice of playing ‘a’
and Black’s choice of playing ‘b’. If we let boolean variable x represent whether
White chose to send the ladder up, and let y represent whether Black chose to
send the ladder up, then the current line of play corresponds to setting (z,y) =
(true, false). In general we have for each variable a choice gadget, an upper
and lower mirror, and a join gadget, positioned at the corners of an imaginary
diamond shape. The setting of the variable determines which (upper or lower)
edges of the diamond get covered and which get exposed. All gadgets are placed
sufficiently far apart to ensure their correct operation. (Recall that this specific
instance differs from the general one in that we saved some space by merging a
Join and Black choice gadget in the centre.)

VII

Now consider the top black choice gadget. If play arrives here and the ladder
leaves to the bottom-left (T), then it works if and only if x is true. If it leaves
to the bottom-right, then it works if and only if y is true. It follows that the
ladder going up from White’s choice at ‘u’—which after bouncing off 2 mirrors
enters the top black choice gadget—works if z V y holds. Similarly, the ladder
going down from White’s choice at ‘d’ works if =z V =y holds. Hence, after both
variables have been set, the ladder works if (zVy)A(—zV—y). This shows that our
original problem indeed encodes the truth of the formula Va3y(zVy) A (—zV-y),

To prove Theorem 1, i.e. PSPACE-completeness, we must show two things:
first, that LADDERS belongs to PSPACE, and second, that QBF (known to
be PSPACE-complete) reduces to LADDERS.

3.2 LADDERS € PSPACE

Membership in PSPACE would follow if capturability can be determined by a
polynomial-depth-limited search. As long as white keeps adding stones to his
group, the search must reach an end before the group becomes bigger than the
whole board. Consider then a line of play where instead, white on his move
always captures some black stones to gain extra liberties. Since the search ends
in failure for Black when white gains 2 liberties (for a total of 3), we may assume
that only one stone of each captured black group is adjacent to White’s group.
Let us analyze how many times black can replay on that point.

If White captured 2 or more stones, and Black replays on the liberty, then
White can recapture and either Black’s 2nd replay is suicide, or it captures white
in a ‘snapback’ (Figure 3.2, diagram A), both settling the situation.

Fig. 4. 3 types of recapturing

If White captured 1 stone, then Black can only replay there by capturing
White’s stone back. If the latter captures multiple White stones, then White
can recapture too and settle the situation (Figure 3.2, diagram B). If instead
Black captures just the one White stone, then the recaptures can continue back
and forth, a situation known as ‘ko’ (Figure 3.2, diagram C).

VIII

The rules of go forbid taking back immediately in a ko, since this recreates
the position of 2 moves back. The stronger “superko” rule forbids repetition of
any earlier position, but this rule is not universally accepted as opposed to the
basic ko rule above.

Now, if there are at least 4 kos adjacent to the ladder, then White, in atari,
has at least 3 choices of where to capture, while Black has only 2 choices of
capture. Under the basic ko rule, this allows both players to cycle forever, while
the superko rule forbids Black first. In both cases the search ends in failure for
Black.

With at most 3 kos, there are at most 6 configurations (001, 010, 011, 100,
101, 110, according to what player holds which kos). Figure 3.2 shows an example
where the ladder runs into a such a “triple ko”. With superko, White will be
forbidden to cycle in this case (examples of superko forbidding Black are equally
well possible) and the ladder works, but without superko, it will cycle forever
and Black fails.

In conclusion, White can temporarily avoid extending his group by captures
but once all non-ko situations are settled, then this is only possible by starting
multiple kos. If White can start enough then he prevails, else the result is de-
termined by the exact ko rules. Alltogether, White needs to extend his group
at least once every 6 times boardsize moves, so the search may be limited to a
depth of 6 times boardsize squared, showing that LADDERS is in PSPACE.

rrrrr 060000 e
000600008

Fig. 5. A ladder depending on a triple ko

3.3 QBF reduces to LADDERS

Consider the standard PSPACE-complete problem

QBF: Given a quantified boolean formula F' = Q121Q222 ... Q,z, E, where E
is a Boolean expression involving 1, ...,z, and each @; is either “¥” or “3”,
determine if F' is true.

IX

We show how to reduce QBF to LADDERS by way of the example

aVyIz(mz A—y) V (mx Ay) V (mz A (mx V 2)).

M
N
M M
M /
B
M . \M
W
L\B/o o J /NI M
wooo i/ M
\M \M B\O {B M
Y /
W
AN
M
M\M
M w
N(M

M M

Fig. 6. schematic of ladder instance JzVyIz(x A —y) V (mx Ay) V (-2 A (mz V 2))

The construction for this example is illustrated in Figure 6. The sequence of
diamonds is similar to that in the opening problem, with a Black choice gadget
for each 3 quantifier, and a White choice gadget for each V. The size of each
diamond is made proportional to the maximum of the number of positive and
the number of negative occurances of the corresponding variable, so that we
can have a disjoint incoming ladder for each occurance. Inside each diamond we
place extra white stones to act as ladderbreakers. This ensures the failing of any
incoming ladder an the uncovered side of the diamond. Next, to the right of the
last diamond, the boolean expression is laid out. Each V is mapped to a Black
choice gadget, and each A to a White choice gadget. The two subexpressions are
then recursively laid out to the upper right, and lower right, spaced sufficiently
apart to allow for disjoint ladders. At the leaves we place mirrors directing the
ladder to the appropriate diamond. Ladder-paths are free to intersect since the

X

actual line of play can only follow one path back to a diamond. It should be
obvious how to apply this method to any formula in QBF.

As explained in section 3, the ladder thus constructed works if and only if
the formula is true.

4 Conclusions

For the first time, we have identified a natural aspect of the game of Go—
the ladder—which is not only PSPACE hard, but PSPACE-complete. This may
surprise many Go players who think reading out ladders is an elementary exercise
in visualization.

Our reduction improves on that of Lichtenstein and Sipser [LS80] in simplicity
(by avoiding the need for intersection gadgets), economy (using a number of
stones only linear in formula size), and aesthetic appeal (the opening problem
would not look out of place in a go magazine).

References

[GJ79] Garey, M., R., Johnson, D., S., Computers and Intractability, Bell Telephone
Laboratories, (1979)

[LS80] Lichtenstein, D. and Sipser, M., GO is Polynomial-Space Hard, Journal of the
ACM, Vol. 27, No. 2, (April 1980) 393-401.

[R83] Robson, J., The Complexity of Go, Proc. IFIP (International Federation of In-
formation Processing), (1983) 413-417.

[P94] Papadimitriou, H., Computational complexity, Addison-Wesley, (1994)

