
Ladders are PSPACE-
omplete

Mar
el Crâ�smaru
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Abstra
t. In the game of Go, the question of whether a ladder|a

method of 
apturing stones|works, is shown to be PSPACE-
omplete.

Our redu
tion 
losely follows that of Li
htenstein and Sipser [LS80℄, who

�rst showed PSPACE-hardness of Go by letting the out
ome of a game

depend on the 
apture of a large group of stones. We a
hieve greater

simpli
ity by avoiding the need for pipes and 
rossovers.

1 Introdu
tion

Consider the following Go

1

problem: Bla
k to 
apture the marked white stone

1

details of the rules may be found at http://www.
wi.nl/~tromp/go.html.
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We will show how this position en
odes the Quanti�ed Boolean Formula

(QBF) 8x9y(x _ y) ^ (:x _ :y). Sin
e this formula is true, the ladder should

work, as the reader may verify.

The problem of de
iding the truth of QBF is 
omplete for the 
lass PSPACE

of all problems that 
an be de
ided using an amount of spa
e that is polynomial

in the length of the input (see Theorem 7.10 of [GJ79℄). Completeness means

that not only is QBF in the 
lass PSPACE, but that every other problem in

this 
lass 
an be eÆ
iently (in polynomial time) redu
ed to QBF, so that QBF

is, essentially, a hardest problem in PSPACE. For many games, we 
an 
onsider

the problem of whether a position on an arbitrarily large board (say, n by n)

is a win for the player to move. This 
an usually be determined by a re
ursive

sear
h, whi
h uses spa
e proportional to the produ
t of board des
ription size

and the maximum length of the game. The former is 
ertainly polynomial and

the latter quite often is too. Those games are therefore in PSPACE, and showing


ompleteness of su
h a game establishes that there is some intrinsi
 hardness to

the game. E.g. there 
an be no `short
uts' by whi
h the results of a position


an be 
omputed eÆ
iently, in polynomial time, if we a

ept the widely held

belief that the 
lass P of polynomial time solvable problems is a stri
t subset of

PSPACE.

Our main result is

Theorem 1 LADDERS is PSPACE-
omplete.

We formalize the game of Go and the ladder problem as follows:

GO: Given a position on an arbitrarily-sized Go board, does Bla
k have a win-

ning strategy?

LADDERS : Given a position on an arbitrarily-sized Go board, and a white

group with 2 liberties, 
an Bla
k keep putting white in atari|that is, redu
e

white to 1 liberty|until 
apture?

As shown by Li
htenstein and Sipser [LS80℄, one 
an 
onstru
t positions in

whi
h bla
k vi
tory hinges upon the survival of a very large eyeless white group,

that Bla
k has almost entirely surrounded. To survive, it needs to 
onne
t to a 2-

eyed group through a stru
ture of pipes and jun
tions that 
an be modeled after

a Quanti�ed Boolean Formula. This proved GO to be PSPACE hard. Robson

[R83℄ used the same idea but introdu
ed a 
olle
tion of ko's into the stru
ture,

so that the large group 
ould 
onne
t out only if its owner held an appropriate

subset of all the ko's. Su
h ko-games were shown to be EXPTIME-
omplete.

But even though the owner of the large group might not be able to obtain an

appropriate subset of ko's, he might be able to keep 
y
ling through the ko's,

so that the out
ome of the game depends on the exa
t rule dealing with board-

repetition. Robson assumed a basi
 ko rule only forbidding immediate re
apture

in a ko thereby establishing EXPTIME-
ompleteness of the question whether an

arbitrary position is a for
ed win for Bla
k or not. An interesting open problem


on
erns the 
omplexity of Go with the superko rule that forbids the whole board

position from repeating, whi
h ex
ludes the possibility of an in�nite 
y
le.
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Both 
onstru
tions employ pipes, a pipe being a line of white stones sand-

wi
hed between 2 lines of bla
k stones. Pipes are essential in 
ontaining the 
ow

of play between the other gadgets (similar to the ones we will introdu
e) used in

the 
onstru
tions. A disadvantage of pipes is that they take up spa
e, and thus


annot simply 
ross on a Go board. Both Robson (dire
tly), and Li
htenstein

and Sipser (indire
tly; at the 
on
eptually higher level of graphs), 
onstru
ted in-

genious but somewhat 
ompli
ated pipe-interse
tions. How mu
h easier it would

be to model play not as a 
ow to be 
ontained but as light that travels unaided

through empty spa
e; bent by mirrors where need be.

2 Enter the ladder

One of the �rst aspe
ts of the game that beginners familiarize themselves with,

the ladder (Figure 1) is a straightforwardmethod of 
apturing stones by repeated

atari on alternate sides. As shown in diagram L2, the ladder travels diagonally

a
ross the board and its fate will depend on what meets its path. A ladder will

work, i.e. result in 
apture, if it either hits the edge of the board, or an existing

solitary bla
k stone, as in diagram W2. It will fail if it hits or borders on a

solitary white stone, as in diagram F2. In that 
ase White's move at 12 puts the

bla
k stone at 9 in atari, and if Bla
k persists at 13, White 
aptures her way

to freedom. There are of 
ourse many more 
ompli
ated situations where the

ladder approa
hes both bla
k and white stones in ea
h others vi
inity, or where

these stones are short on liberties. There we 
annot easily determine whether the

ladder works. In fa
t we will exploit these possibilities in our own 
onstru
tion.

Ladders are for
ed sequen
es that 
an run all a
ross the board, 
ausing plays

in one area of the board to a�e
t other, remote areas. Ladders are also ubiquitous

in Go; they 
ome up many times per game, if not in a
tual play then at least in

the variations that a player 
onsiders to de
ide on his next move.

We show how ladders 
an take the pla
e of pipes in 
onstru
ting hard 
apture

problems.

3 Of Forks, Joins, and Mirrors

Our introdu
tory ladder problem features the four di�erent gadgets listed in

Figure 2: the bla
k 
hoi
e (B), the white 
hoi
e (W), the join (J) and the mirror

(M) (for 
on
iseness a bla
k 
hoi
e is partially merged with the join to its right

in the 
entre of the problem).

In diagram B1, we see a Bla
k 
hoi
e gadget with a proje
ted ladder ap-

proa
hing from the top left. When Bla
k plays the ladder, he'll have a 
hoi
e

of playing move 9 on the right or the left of White, leading respe
tively to dia-

gram B2 or B3. From Bla
k's viewpoint, the top-left ladder works if either the

bottom-left ladder in B2, or bottom-right ladder in B3, work.

In diagram W1, we see a White 
hoi
e gadget with a proje
ted ladder ap-

proa
hing from the top left. When Bla
k plays the ladder, white's move 10

puts the marked bla
k stone in atari, and Bla
k must play above it to prevent
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Fig. 1. various ladders

White from getting too many liberties. Now White 
an 
hoose to either 
apture

the marked stone, or extend to the right, leading respe
tively to diagram W2

or W3. Bla
k's moves 15 and 17 in diagram W2 are needed to route the ladder

around the rightmost white stone, whi
h would otherwise interfere. From Bla
k's

viewpoint, the top-left ladder works if both the right-down ladder in W2, and

right-up ladder in W3, work.

In diagram J1, we see a Join gadget with proje
ted ladders approa
hing from

the top left and top right. Diagram J2 shows what happens with a ladder from

the top left. The for
ed sequen
e ends with the ladder 
ontinuing to the bottom

left. Diagram J3 shows the symmetri
al 
ase of a ladder from the top right. From

Bla
k's viewpoint, either top ladder works if the bottom-left ladder does.

Finally, in diagram M1, we see a Mirror gadget with a proje
ted ladder

approa
hing from the top left. When Bla
k plays the ladder, he is for
ed to send

it ba
k up with move 11. Mirrors allow us to dire
t ladders from one gadget to

the next.
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3.1 Problem Analysis

Figure 3 shows a line of play in our original problem.

a

T

F

b

d

u

Fig. 3. a for
ed line apart from 
hoi
es `a' and `b'

This line of play is entirely for
ed ex
ept for White's 
hoi
e of playing `a'

and Bla
k's 
hoi
e of playing `b'. If we let boolean variable x represent whether

White 
hose to send the ladder up, and let y represent whether Bla
k 
hose to

send the ladder up, then the 
urrent line of play 
orresponds to setting (x; y) =

(true; false). In general we have for ea
h variable a 
hoi
e gadget, an upper

and lower mirror, and a join gadget, positioned at the 
orners of an imaginary

diamond shape. The setting of the variable determines whi
h (upper or lower)

edges of the diamond get 
overed and whi
h get exposed. All gadgets are pla
ed

suÆ
iently far apart to ensure their 
orre
t operation. (Re
all that this spe
i�


instan
e di�ers from the general one in that we saved some spa
e by merging a

Join and Bla
k 
hoi
e gadget in the 
entre.)
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Now 
onsider the top bla
k 
hoi
e gadget. If play arrives here and the ladder

leaves to the bottom-left (T), then it works if and only if x is true. If it leaves

to the bottom-right, then it works if and only if y is true. It follows that the

ladder going up from White's 
hoi
e at `u'|whi
h after boun
ing o� 2 mirrors

enters the top bla
k 
hoi
e gadget|works if x _ y holds. Similarly, the ladder

going down from White's 
hoi
e at `d' works if :x_:y holds. Hen
e, after both

variables have been set, the ladder works if (x_y)^(:x_:y). This shows that our

original problem indeed en
odes the truth of the formula 8x9y(x_y)^(:x_:y),

To prove Theorem 1, i.e. PSPACE-
ompleteness, we must show two things:

�rst, that LADDERS belongs to PSPACE, and se
ond, that QBF (known to

be PSPACE-
omplete) redu
es to LADDERS.

3.2 LADDERS 2 PSPACE

Membership in PSPACE would follow if 
apturability 
an be determined by a

polynomial-depth-limited sear
h. As long as white keeps adding stones to his

group, the sear
h must rea
h an end before the group be
omes bigger than the

whole board. Consider then a line of play where instead, white on his move

always 
aptures some bla
k stones to gain extra liberties. Sin
e the sear
h ends

in failure for Bla
k when white gains 2 liberties (for a total of 3), we may assume

that only one stone of ea
h 
aptured bla
k group is adja
ent to White's group.

Let us analyze how many times bla
k 
an replay on that point.

If White 
aptured 2 or more stones, and Bla
k replays on the liberty, then

White 
an re
apture and either Bla
k's 2nd replay is sui
ide, or it 
aptures white

in a `snapba
k' (Figure 3.2, diagram A), both settling the situation.

CA B
Fig. 4. 3 types of re
apturing

If White 
aptured 1 stone, then Bla
k 
an only replay there by 
apturing

White's stone ba
k. If the latter 
aptures multiple White stones, then White


an re
apture too and settle the situation (Figure 3.2, diagram B). If instead

Bla
k 
aptures just the one White stone, then the re
aptures 
an 
ontinue ba
k

and forth, a situation known as `ko' (Figure 3.2, diagram C).
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The rules of go forbid taking ba
k immediately in a ko, sin
e this re
reates

the position of 2 moves ba
k. The stronger \superko" rule forbids repetition of

any earlier position, but this rule is not universally a

epted as opposed to the

basi
 ko rule above.

Now, if there are at least 4 kos adja
ent to the ladder, then White, in atari,

has at least 3 
hoi
es of where to 
apture, while Bla
k has only 2 
hoi
es of


apture. Under the basi
 ko rule, this allows both players to 
y
le forever, while

the superko rule forbids Bla
k �rst. In both 
ases the sear
h ends in failure for

Bla
k.

With at most 3 kos, there are at most 6 
on�gurations (001, 010, 011, 100,

101, 110, a

ording to what player holds whi
h kos). Figure 3.2 shows an example

where the ladder runs into a su
h a \triple ko". With superko, White will be

forbidden to 
y
le in this 
ase (examples of superko forbidding Bla
k are equally

well possible) and the ladder works, but without superko, it will 
y
le forever

and Bla
k fails.

In 
on
lusion, White 
an temporarily avoid extending his group by 
aptures

but on
e all non-ko situations are settled, then this is only possible by starting

multiple kos. If White 
an start enough then he prevails, else the result is de-

termined by the exa
t ko rules. Alltogether, White needs to extend his group

at least on
e every 6 times boardsize moves, so the sear
h may be limited to a

depth of 6 times boardsize squared, showing that LADDERS is in PSPACE.

1
2 4

3
5

6 8

7

Fig. 5. A ladder depending on a triple ko

3.3 QBF redu
es to LADDERS

Consider the standard PSPACE-
omplete problem

QBF: Given a quanti�ed boolean formula F = Q

1

x

1

Q

2

x

2

: : : Q

n

x

n

E, where E

is a Boolean expression involving x

1

; : : : ; x

n

and ea
h Q

i

is either \8" or \9",

determine if F is true.
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We show how to redu
e QBF to LADDERS by way of the example

9x8y9z(:x ^ :y) _ (:x ^ y) _ (:z ^ (:x _ z)):

J
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J
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Fig. 6. s
hemati
 of ladder instan
e 9x8y9z(x^ :y) _ (:x ^ y) _ (:z ^ (:x _ z))

The 
onstru
tion for this example is illustrated in Figure 6. The sequen
e of

diamonds is similar to that in the opening problem, with a Bla
k 
hoi
e gadget

for ea
h 9 quanti�er, and a White 
hoi
e gadget for ea
h 8. The size of ea
h

diamond is made proportional to the maximum of the number of positive and

the number of negative o

uran
es of the 
orresponding variable, so that we


an have a disjoint in
oming ladder for ea
h o

uran
e. Inside ea
h diamond we

pla
e extra white stones to a
t as ladderbreakers. This ensures the failing of any

in
oming ladder an the un
overed side of the diamond. Next, to the right of the

last diamond, the boolean expression is laid out. Ea
h _ is mapped to a Bla
k


hoi
e gadget, and ea
h ^ to a White 
hoi
e gadget. The two subexpressions are

then re
ursively laid out to the upper right, and lower right, spa
ed suÆ
iently

apart to allow for disjoint ladders. At the leaves we pla
e mirrors dire
ting the

ladder to the appropriate diamond. Ladder-paths are free to interse
t sin
e the
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a
tual line of play 
an only follow one path ba
k to a diamond. It should be

obvious how to apply this method to any formula in QBF.

As explained in se
tion 3, the ladder thus 
onstru
ted works if and only if

the formula is true.

4 Con
lusions

For the �rst time, we have identi�ed a natural aspe
t of the game of Go|

the ladder|whi
h is not only PSPACE hard, but PSPACE-
omplete. This may

surprise many Go players who think reading out ladders is an elementary exer
ise

in visualization.

Our redu
tion improves on that of Li
htenstein and Sipser [LS80℄ in simpli
ity

(by avoiding the need for interse
tion gadgets), e
onomy (using a number of

stones only linear in formula size), and aestheti
 appeal (the opening problem

would not look out of pla
e in a go magazine).
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