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Abstract

We present several results concerning the number of positions and
games of Go. We derive recurrences for L(m,n), the number of legal posi-
tions on an m×n board, and develop a dynamic programming algorithm
which computes L(m,n) in time O(m3n2λm) and space O(mλm), for some
constant λ < 5.4. We used this to compute L(n, n) up to the standard
board size n = 19. In ternary (mapping 0,1,2 to empty,black,white)

L(19, 19) =
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For even larger boards, we prove existence of a base of liberties

L = lim
m,n→∞

mn
√
L(m,n) = 2.975734192043357249381 . . .

Based on a conjecture about vanishing error-terms, we derive an asymp-
totic formula for L(m,n), which is shown to be highly accurate.

We also study the Game Tree complexity of Go, proving an upper
bound on the number of possible games of (mn)L(m,n) and a lower bound

of 22
n2/2−O(n)

on n × n and 22
n−1

on 1 × n boards, in addition to exact
counts formn ≤ 4 and estimates up tomn = 9. We end with investigating
whether one game can encompass all legal positions.
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1 Introduction

Originating over 3000 years ago in China, Go [2] is perhaps the oldest boardgame
in the world, enjoyed by millions of players worldwide. Its deceptively simple
rules [3] give rise to amazing strategic depth. Results about the computational
complexity of Go date back some 35 years. In 1980, Lichtenstein and Sipser [8]
proved Go PSPACE-hard, while 3 years later, Robson [10] showed Go with the
basic ko rule to be EXPTIME-complete. More recently, certain subproblems
of the game have been shown PSPACE-complete, like endgames [7] and lad-
ders [14]. This paper focuses instead on the state complexity of Go. We are
motivated by the fact that the number of legal positions is a fundamental prop-
erty of a game, the notion of legal position being unambigiously defined for Go
despite many variations in rulesets, and that its computation turns out to be a
huge computational challenge which was only met in 2016.

2 Previous work

Results about the state complexity of Go have been mostly confined to the online
newsgroup rec.games.go and the computer-go mailing list. In September
1992, a rec.games.go thread “complexity of go” raised the question of how
many positions are legal. It was noted that a trivial upper bound is 3mn, since
every point on the board may be empty, black, or white. A position is legal if
and only if every string of connected stones of the same color has an empty point
adjacent to it. Achim Flammenkamp was the first to post simulation results,
showing that L(19, 19) ∼ 0.012×3361 ∼ 2.089×10170. In August 1994, a thread
“Complexity of Chess and Go” revisited the problem. Jack Hahn, Jonathan
Cano, and John Tromp all posted programs to compute the number of legal
positions by brute force enumeration. The largest count published at the time
was L(4, 5) = 1840058693. A week’s worth of computation would have found
L(5, 5) as well, but enumerating L(6, 6) takes over 10000 times longer, severely
limiting this approach.

In a January 2000 thread “Number of Legal Positions on Almost Rectangular
Boards”, inspired by earlier remarks by John Tromp and Hans Zschintzsch, Les
Fables first explained in detail how to count using dynamic programming. His
remark “Calculation for 9x9 should be possible on any PC, and a supercomputer
should easily be able to handle 13x13.” proves to be spot on. Much later, on
January 23, 2005, Eric Boesch independently discovered this method on the
computer-go mailing list. His method is implemented the next day by Tapani
Raiko, but a bug leads him to post a wrong count for L(5, 5). Later that day
Jeffrey Rainy, based on his own implementation, gives the correct values for
L(5, 5) and L(6, 6) but wrong values for L(7, 7) and L(8, 8). Finally, the next
day, Gunnar Farnebäck posts the first bugfree program, providing counts up
to L(10, 10). In June 1999, a thread “Math and Go” discussed the number of
games of Go. Robert Jasiek claimed an upper bound of n3

n

, which still needs to
be corrected for intermediate passes. John Tromp showed how to get a double
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exponential lower bound, which we make more formal while fixing a slight flaw,
in this paper. In the same month, John Tromp started a thread “number of 2*2
games”, noting that the number is 386356909593, as was recently independently
verified.

3 History of compute intensive results

Results from Tromp’s memory based C program were posted on June 29, 2005
for 13x13, and August 11, 2005 for 14x14, when Michal Koucký helped develop
a file-based version to get around memory limitations, and introduced the use
of Chinese Remaindering. That led to posting legal counts for 15x15 on August
28, 2005, for 16x16 on October 6, 2005 and much later for 17x17, on August 18,
2006. It wasn’t until early 2014 that Tromp got an offer from Piet Hut at the
Institute for Advanced Studies, to use their computing cluster for 18x18. These
were announced on Hacker News on March 9, 2014 accompanied by a request
for yet more computing power to tackle 19x19, that was finally announced on
Jan 22, 2016.

4 Preliminaries

A position on an m×n Go board is a mapping from the set of points {0, . . . ,m−
1}×{0, . . . , n−1} to the set of colors {empty,black,white}. Points are adjacent
in the usual grid sense—equal in one coordinate and differing by one in the other.
A point colored black or white is called a stone. Adjacent stones of the same
color form connected components called strings. An empty point adjacent to a
string is called a liberty of that string. A game of Go starts with an empty board.
The players, black and white, alternate turns, starting with black. On his turn, a
player can either pass, or make a move which doesn’t repeat an earlier position.
This is the so-called Positional SuperKo (PSK) rule. Some rulesets, notably
the American Go Association’s AGA rules, use the Situational SuperKo (SSK)
rule, which only forbids repeating a position with the same player to move. A
move consists of coloring an empty point your color, followed by emptying all
opponent strings without liberties (capture), followed by emptying all your own
strings which then have no liberties (suicide). Finally, two consecutive passes
end the game 1. Thus, in positions arising in a Go game, strings always have
liberties. Such positions are called legal. The number of legal m × n positions
is denoted L(m,n).

Figures 3 and 4 show all positions on a 2 × 2 board. Obviously, the 16
positions with 4 stones are illegal. Additionally, the 8 positions with a stone of
one color neighboured by two stones of the opposite color, are illegal. Since all
other 3 stone positions and all positions with 2 or fewer stones are legal, we find
that L(2, 2) = 34 − 16− 8 = 57.

1since none of our results is concerned with the outcome of a game, we refrain from dis-
cussing scoring rules, except to note that these account for the major variation in rulesets
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Figure 1: game graph G(1, 2).

Figure 2: game graph G(1, 3).

Definition 1 (game graph) Let G(m,n) be the directed graph whose vertices
are the legal m × n positions, and which has a directed edge p → q whenever a
white or black move from position p results in position q 6= p.

Note that we exclude self-loops, corresponding to single-stone suicides, which
are prohibited by the PSK rule. This will prove useful in Lemma 1 below.

Figure 1 shows G(1, 2), consisting of 5 nodes and 12 edges, Figure 2 shows
G(1, 3), consisting of 15 nodes and 42 edges, while Figure 4 shows G(2, 2) fac-
tored into rotation/mirror symmetry classes. Piet Hut observed that these
latter two graphs are the only ones with no 2-loops. We next establish some
basic properties of Go game graphs.

Lemma 1 Outgoing edges from a position are in 1-1 correspondence with moves
that are not single-stone suicides.

Proof. Given a position p, each move uniquely determines a resulting
position q and hence an edge p → q. It remains to show the converse; that
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Figure 3: All 16 + 8 = 24 illegal 2× 2 positions

Figure 4: game graph G(2, 2) containing all 81-24=57 legal positions, with
nodes/edges grouped into rotation/mirror symmetry classes.
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a resulting position q 6= p uniquely determines a move. If q has one more
stone of color c, say at position (x, y), and the same or fewer stones of opposite
color, then that was the move. If q has fewer stones of color c and the same
number of stones of opposite color, then the missing stones must form a string
with 1 liberty, and the move was a suicide. It can be seen that these cases are
exhaustive, the former covering all non-suicide moves, and the latter covering
all multiple-stone suicides. •

Corollary 1 A node with k empty points has outdegree at most 2k.

Corollary 2 Each edge has an implied black or white color.

Recall that a simple path is one that has no repeated vertices.

Lemma 2 Go games are in 1-1 correspondence with simple paths starting at the
empty position in the game graph.

Proof. The previous Lemma shows that any path corresponds to a sequence
of moves, not necessarily alternating in color. Inserting a single pass before every
out-of-turn move, and 2 passes at the end, produces a properly alternating and
ending game. The starting node ensures that the game starts from an empty
board, while simplicity of the path ensures that each move is legal. Furthermore,
since any game can be stripped of its passes to produce the corresponding path,
this is a bijection. •

The above Lemma applies only to rules with Positional SuperKo. With
Situational SuperKo, the corresponding paths are not necessarily simple, and a
position can be visited twice (once by each player).

Lemma 3 The game graph is strongly connected.

Proof. Obviously we can reach any position from the empty board, so it
suffices to show that we can reach the empty position from any position. We
eliminate strings one by one, without ever creating new strings. To eliminate
a string, its owner repeatedly plays on its liberties while his opponent passes.
Some opponent strings may get captured in the process, but ultimately, the
string itself will commit suicide. •

Note that this result depends on the possibility of suicide, and fails to hold
for alternative rulesets, such as the Japanese rules of Go, which forbid suicide.
Under such rules, a slightly weaker property can be shown.

Lemma 4 On all boards except 1×1, 1×2 and 2×1, the game subgraph obtained
by removing the empty position and all suicide edges is strongly connected.

Proof. First note that G(1, 1) has no suicide-edges to remove, while G(1, 2)
breaks into 2 components when removing the empty position. Obviously, we can
reach any position from a suitable single-stone position, so it suffices to show
that we can reach every single-stone position from any position. First, one
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Figure 5: Two partial positions up to (3, 3) and their common border state.

player, say black, repeatedly plays on a liberty of its strings. When all such
plays result in suicides, the other player, white, can proceed to capture all black
strings. Next, white can play until she has mn − 1 stones, which black then
captures. Given that mn ≥ 3, we can repeat this last phase to lead to a capture
by the desired color on the desired point. •

5 Counting legal positions

The simplest way to count L(m,n), the number of legal m× n positions, is by
brute force, just trying all 3mn positions and testing each one for legality. How-
ever, a 5× 5 board already has over 400 billion possible positions, and 9× 9 has
over 1038. Instead, we establish a correspondence between legal positions and
paths in the so called border state graph, whose size is much more manageable.
The problem thus reduces to that of counting paths of a certain length in a
graph, which can be done efficiently by the method of Dynamic Programming.
First we introduce the notion of partial boards, from which the border states
naturally arise.

5.1 Partial Boards

Recall that we number the points (x, y) ∈ {0, . . . , n− 1} × {0, . . . ,m− 1}. We
picture a go board with the point (0, 0) in the top-left, x-coordinates increasing
to the right, and y-coordinates increasing downward. For 0 ≤ x < n and
0 ≤ y < m, let a partial go board up to column x and row y consist of all the
points to the left of and above (x, y). It has x full columns and, if y > 0, one
partial column of y points. Figure 5 shows two example partial 7× n positions
up to (3, 3).

What these positions have in common is that the set of possible completions
into legal full-board positions is identical. In either case, the remainder of the
position has to provide a liberty to the top white group, to the black group it
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surrounds, and to the middle black group. We say that the positions share the
same border state.

5.2 Border States

Definition 2 (border state) A border state, or state for short, comprises
the following data:

• the board height m,

• the size 0 ≤ y < m of the partial column,

• the color of border points (x, 0), . . . , (x, y− 1), (x− 1, y), . . . , (x− 1,m− 1)
(x is only a symbol whose value is immaterial to the state),

• for each stone on the border, whether it has liberties,

• connections among libertyless stones.

A state with height m and partial column size y is called an
(
m
y

)
-state, or

simply y-state if m is clear from context. A partial position is pseudolegal if
all libertyless stones are on, or connected to, the border. A state is called con-
structible if it is the border state of some pseudolegal partial position of arbitrary
width.

Information of liberties and connections is assumed to be consistent within
the border.

A partial position up to (0, y) has a border state where points (x−1, y), . . . , (x−
1,m − 1) are off the board. We accomodate these zero-width positions by al-
lowing the non-color ‘edge’ for all (x − 1, ·) points, and call the result an edge
state instead.

In figures, libertyless stones and their connections are indicated with lines
emanating to the left.

The set of constructible states is difficult to characterize, and hence to count.
We therefore introduce a slightly larger class.

Definition 3 Call a y-state s valid if it satisfies all the following:

• connections don’t cross, i.e. if 4 stones are ordered vertically as a, b, c, d,
with a and c connected, and b and d connected, then they must all be
connected.

• if a stone at (x, y − 1) either

– has connections, but (if y > 1) not to (x, y − 2), or

– has liberties, but (if y > 1) (x, y − 2) is opposite-colored,

then points (x, y − 1) and (x− 1, y) are considered adjacent.

Lemma 5 Every constructible state is valid.
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Figure 6: (a) a valid but unconstructible state (b) non-rectangular boardshape

Proof. The non-crossing property can be seen to follow from the planarity
of two-dimensional boards. If border point (x, y−1) has a connection necessarily
going through non-border point (x−1, y−1), then the latter’s neighbour (x−1, y)
is effectively also the former’s neighbour. This virtual adjacency implies that
(x − 1, y) must be either opposite colored, or same colored and connected to
(x, y − 1). Similarly, if (x, y − 1) has a liberty necessarily obtained through
(x− 1, y− 1), then (x, y− 1) is effectively adjacent to (x− 1, y), preventing the
latter from being a same colored-stone without liberties. •

The smallest example of a valid but not constructible state occurs at m = 3
as shown in Figure 6(a). Any partial board that connects the two white stones
and provides a liberty to the black stone, will inevitably provide a liberty to the
white stones as well. In other words, the fixed board height of 3 doesn’t allow
the white string to distance itself from the black one. If we allowed variable
height board shapes such as the one shown in Figure 6(b), then the above valid
state would become constructible. It can be shown that non-constructability
of valid states is due entirely to the ‘lack of room’ to simultaneously provide
liberties and connections.

We can somewhat efficiently compute the number of valid 0-border states,
each of which corresponds to a balanced path of length m through the finite
automaton shown later in Figure 10. In a balanced path the up and down con-
nections of libertyless black and white stones match up properly like balanced
parentheses of two types, e.g. ‘([]([]))’. Using Dynamic Programming, we can
compute the number of such paths ending in a given vertex of the automaton
with a given stack of pending connections. With at most m/2 pending connec-
tions, there are at most 2m/2 such stacks. Having all counts for paths of length
l, we can in time O(2m/2) compute all counts for paths of length l + 1, thus
taking time O(m2m/2) overall. It took only 0.005 sec to determine the number
of
(
19
0

)
border states in this manner. Computing numbers of y-states for y > 0,

numbers of edge states, and of state classes is only slightly more complicated
and can be done within the same time complexity.

Table 1 shows for each m the minimum and maximum number of valid
(
m
y

)
-

border state classes, which turn out to be achieved at y = 0 and y = m − 1,
respectively. The maximum is always about 45% larger than the minimum.

Only a tiny percentage of the listed valid states fails to be constructible (e.g.
only 337 of the 109736 valid

(
9
0

)
-classes).
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m #valid
(
m
0

)
-classes #valid

(
m
m−1

)
-classes

1 3 3
2 9 13
3 32 46
4 117 168
5 444 642
6 1712 2482
7 6742 9808
8 26973 39324
9 109736 160286

10 452863 662265
11 1894494 2772774
12 8020098 11742926
13 34320647 50258461
14 148266922 217096273
15 645949499 945567689
16 2835158927 4148642993
17 12526125303 18320946269
18 55665579032 81376671503
19 248661924718 363324268018

Table 1: Number of valid border state classes.

5.3 The border state graph

Let’s see how the border state of a partial board up to (x, y) and the color
of (x, y) uniquely determine the border state up to (x, y + 1), as exemplified in
Figure 7. If (x, y) is empty, then any libertyless stones at (x, y−1) and (x−1, y)
as well as all stones connected to them, become stones with liberties. Otherwise,
suppose (x, y) is black.

If (x − 1, y) is a libertyless white stone without connections, then the new
partial board is no longer pseudolegal; a case we must avoid.

If either (x, y−1) or (x−1, y) is empty or black with liberties then (x, y) has
liberties, which it may provide to the other neighbour (if that is black without
liberties).

Finally, if neither (x, y − 1) nor (x − 1, y) provides liberties, then (x, y) is
without liberties and connects any black neighbours.

The case for (x, y) being white is identical with all colors reversed.
Similarly, the edge state of a partial board up to (0, y) and the color of (0, y)

uniquely determine the edge state up to (0, y+ 1) (in case y < m− 1) or border
state up to (1, 0) (in case y = m− 1).

Definition 4 ((augmented) border state graph) Let B(m) be the directed
graph whose vertices are the constructible border states of height m, and which
has edges from each y-state to its 2 or 3 successor ((y + 1) mod m) states. The

10



a border state empty successor black successor white successor

Figure 7: A border state and its 3 successors.

E

Figure 8: Augmented border state graph AB(1).

augmented border state graph AB(m) has additional vertices and outgoing edges
for all edge states.

Figure 7 shows the 3 successors of a border state, while Figure 8 shows the
augmented border state graph AB(1). Border state graph B(2) is too large to
show in full detail, so instead of border states we show border state classes.

For further clarity, Figure 9 shows edges between the 9 0-state classes and
13 1-state classes separately for each direction, with the state classes ordered to
minimize edge crossings. Thick edges represent the case where adding a black
stone and adding a white stone lead to equivalent states in B(2).

Lemma 6 The border state graph is strongly connected.

Proof. Every y-state reaches the stoneless y-state afterm empty successors,
and thus reaches the stoneless 0-state after another m − y empty successors.
From the latter, we can reach any possible column 0 state s, and hence any
constructible state, as follows. Note that s can be reached in m steps from a
0-state s′ that replaces each stone in s by a stone with liberties of the opposite

11



Edges from 0−states to 1−states

Edges from 1−states to 0−states

Figure 9: Edges between state classes of B(2).

color, effectively forming a virtual edge. Any such state s′ can clearly by reached
from the stoneless 0-state in m steps. •

Lemma 7 There is a 1-1 correspondence between pseudolegal partial positions
up to (n, y) and paths of length mn+y through the augmented border state graph
that start at the all-edge state.

Proof. By induction on mn + y. The unique partial position up to (0, 0)
corresponds to the length 0 path starting at the all-edge state. Furthermore,
for a path ending at state s corresponding to a pseudolegal partial position p
up to (n, y), the successors of s correspond exactly to the pseudolegal partial
positions p′ up to (n, y + 1) (or (n+ 1, 0) for y = m− 1) that extend p by one
point. •

5.4 Recurrences

Definition 5 (state counts) For an
(
m
y

)
-state s, denote by L(m,n, y, s) the

number of pseudolegal partial positions up to (n, y) that have border/edge state
s (or equivalently, the number of paths of length mn+y in the augmented border
state graph from the all-edge state to s). Call a y-state s legal if y = 0 and s
has no libertyless stones.

Obviously, we have

Lemma 8 (color symmetry) Let state s′ be derived from state s by reversing
the colors of all stones. Then L(m,n, y, s) = L(m,n, y, s′).

12



Definition 6 (state classes) We define a state class, denoted [s], as the
equivalence class of state s under color reversal. Call a state class legal when
its members are, and define L(m,n, y, [s]) =

∑
s′∈[s] L(m,n, y, s′).

Note that all equivalence classes, except for stoneless states, consist of exactly
2 states. These definitions immediately imply

Lemma 9 L(m,n) =
∑

legal s L(m,n, 0, s) =
∑

legal [s]
L(m,n, 0, [s]).

Another form of symmetry occurs in 0-states only:

Lemma 10 (up-down symmetry) Let state s′ be derived from 0-state s by re-
versing the order of points from top to bottom. Then L(m,n, y, s) = L(m,n, y, s′)
and L(m,n, y, [s]) = L(m,n, y, [s′]).

We refer to state classes resulting from including up-down symmetry in ad-
dition to color symmetry as up/down classes.

Definition 7 (state count vector) Denote by L(m,n, y) the state-indexed
vector with elements L(m,n, y, s) for all constructible y-states s (edge states for
n = 0, border states for n > 0) and by lm the characteristic vector of legal states
of height m.

Now Lemma 9 can be expressed as

L(m,n) = lTmL(m,n, 0).

The following crucial observation forms the basis for the recurrences we derive.
Since L(m,n, y+1, s) equals the sum of L(m,n, y, s′) over all predecessor states
s′ of s in the augmented border state graph, it follows that the border state
vectors L(m,n, y), n > 0 are related by linear transformations Tm,y, such that
L(m,n, y+ 1) = Tm,yL(m,n, y) (and L(m,n+ 1, 0) = Tm,m−1L(m,n,m− 1)).
Indeed, the Tm,y appear as submatrices of the transposed adjacency matrix of
the border state graph. As a consequence, successive 0-state vectors are related
as

L(m,n+ 1, 0) = Tm,m−1Tm,m−2 . . .Tm,1Tm,0L(m,n, 0).

Thus we are led to define

Definition 8 (Recurrence matrix) Let Tm = Tm,m−1 . . .Tm,0.

This leads to a matrix power expression for L(m,n):

L(m,n) = lTmTn−1
m L(m, 1, 0).

Furthermore, L(m,n) can be shown to satisfy a recurrence not involving the
border state counts. To simplify the following derivations, m is understood to
be fixed and is dropped from the notation, so that L(m,n) = lTTn−1L(1, 0).

13



Theorem 1 For fixed m, L(m,n) satisfies a linear recurrence whose order is
at most the number of valid 0-states.

Proof. Let p(λ) be the characteristic polynomial of the r × r matrix T,

p(λ) = det(λI−T) = λr + ar−1λ
r−1 + · · ·+ a1λ+ a0.

By the Cayley-Hamilton theorem, p(T) = 0. It follows that

Tr = −(ar−1T
r−1 + · · ·+ a1T + a0I)

and by multiplication by Tk−1 that

Tr+k−1 = −(ar−1T
r+k−2 + · · ·+ a1T

k + a0T
k−1)

for all k ≥ 1. Multiplying by lT on the left and L(1) on the right yields

L(m, k + r) = lTTr+k−1L(1, 0)

= −(ar−1L(m, k + r − 1) + · · ·+ a1L(m, k + 1) + a0L(m, k))

for all k ≥ 1, proving the theorem. •
By expressing T in terms of state classes rather than states, and modifying

lT and L(1, 0) accordingly (as illustrated in section 5.4.1), we obtain a stronger
upperbound on the order, namely the number of valid 0-state classes as given
in Table 1. Finally, that bound may be nearly halved again by using up/down
classes.

The structure of solutions to linear recurrences is well known [1]. Theorem 1
implies

Corollary 3 For fixed m, L(m,n) can be written in the form

L(m,n) =
∑
k

qk(n)lnk ,

where lk are the distinct eigenvalues of T, and qk are polynomials of degree at
most multiplicity(lk)− 1.

Notice that some of the terms may vanish but not the largest eigenvalue,
which we have additional information about. First a technical lemma is needed.

Lemma 11 If lk 6= 0 is an eigenvalue of T of multiplicity 1 with corresponding

left and right eigenvectors eT and f then qk is the constant lT feTL(1,0)
lk

.

Proof. Let T = VJV−1 be the Jordan canonical decomposition of T. Thus
L(m,n) = lTTn−1L(1, 0) = lTVJn−1V−1L(1, 0). Since lk has multiplicity
one, it must have a single corresponding Jordan block of size 1. Due to the
structure of J only this block can provide lnk terms to L(m,n), more precisely
lT eln−1k fTL(1, 0) •
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Theorem 2 There exist am > 0, 0 < λm ≤ 3m, and 0 < φm < 1 such that

L(m,n) = amλ
n
m(1 + r(m,n))

with r(m,n) = O(φnm).

Proof. By lemma 6 it follows that T is regular, i.e. Tk is (elementwise)
positive for some k. Since, by construction, T is also non-negative, the Perron-
Frobenius theorem guarantees the existence of a real positive eigenvalue l1 with
the properties that it has multiplicity one, is larger in magnitude than all other
eigenvalues, and has left and right eigenvectors eT and f with all elements

positive. From Lemma 11 it follows that q1(n) = lT feTL(1,0)
lk

, which is guaranteed

to be a positive constant since lT and L(1, 0) are non-negative and not all zero

whereas e and f are positive. Now L(m,n) = q1l
n
1 (1 +

∑
k>1

qk(n)
q1

lk
l1

n
) and the

claimed result follows (for any maxk>1
|lk|
l1
< φm < 1). The upper bound on λm

follows necessarily from the trivial upper bound L(m,n) ≤ 3mn. •
The recursion coefficients are most easily obtained by computing L(m,n)

for n = 1, . . . , 2s by the dynamic programming algorithm in section 5.5. Since
we know that the sequence must satisfy some linear recurrence, the problem is
reduced to determining the minimal order and the corresponding coefficients.
Moreover, we know that the minimal order is upper-bounded by the number of
valid state classes s given in Table 1.

Lemma 12 Assume that the sequence x(1), x(2), . . . satisfies the linear recur-
rence

x(k + r) = cr−1x(k + r − 1) + · · ·+ c1x(k + 1) + c0x(k).

Then the coefficients ci satisfy the equation system
x(1) x(2) . . . x(r)
x(2) x(3) . . . x(r + 1)

...
...

. . .
...

x(r) x(r + 1) . . . x(2r − 1)




c0
c1
...

cr−1

 =


x(r + 1)
x(r + 2)

...
x(2r)

 .

Furthermore, r is the minimal order of recurrence iff the above matrix is non-
singular, in which case the coefficients are uniquely determined.

As we do not know the minimal order of recurrence, we form matrices for
increasing r. For each non-singular one, we compute the recurrence coeffi-
cients and verify the recurrence for all s elements L(m, s+ 1) through L(m, 2s).
The smallest verifiable r is the minimal order. For efficient computations, the
Berlekamp-Massey algorithm [11] can be used together with modular arithmetic
and the Chinese Remainder Theorem.
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5.4.1 1× n Boards

For one-dimensional boards, with m = 1, Figure 8 shows the five possible bor-
der states “empty”, “black with liberty”, “white with liberty”, “black with-
out liberty”, and “white without liberty”. The first three are legal, so l =
(1, 1, 1, 0, 0)T . The state count transformation is given by the transposed adja-
cency matrix

T =


1 1 1 1 1
1 1 0 0 0
1 0 1 0 0
0 0 1 1 0
0 1 0 0 1


and the initial state count with one column gives L(1, 0) = (1, 0, 0, 1, 1)T . In this
case T is invertible and we can write L(0, 0) = T−1L(1, 0) = (−1, 1, 1, 0, 0)T

and
L(1, n) = lTTn−1L(1, 0) = lTTnL(0, 0) =

(
1 1 1 0 0

)


1 1 1 1 1
1 1 0 0 0
1 0 1 0 0
0 0 1 1 0
0 1 0 0 1


n
−1
1
1
0
0

 ,

which gives the sequence 1, 5, 15, 41, 113, 313, 867, 2401, 6649, 18413, . . .
The characteristic polynomial of T is p(λ) = det(λI−T) = λ5−5λ4 +8λ3−

6λ2 + 3λ− 1. It follows that L(1, n) satisfies the recurrence

L(1, k + 5) = 5L(1, k + 4)− 8L(1, k + 3) + 6L(1, k + 2)− 3L(1, k + 1) +L(1, k).

This is not a minimal order recurrence, however. Using state classes instead
(empty, stone with liberty, or stone without liberty) yields

l =
(
1 1 0

)T
,

T =

1 1 1
2 1 0
0 1 1

 ,

L(1, 0) =
(
1 0 2

)T
and a characteristic polynomial p(λ) = λ3− 3λ2 +λ− 1, leading to the minimal
recurrence

L(1, k + 3) = 3L(1, k + 2)− L(1, k + 1) + L(1, k).

These coefficients can also be computed directly from L(1, 1), . . . , L(1, 6)
according to Lemma 12 as 1 5 15

5 15 41
15 41 113

−1 41
113
313

 =

 1
−1
3

 .
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L(1, n) can be written in the form of Corollary 3 as

L(1, n) ∼ 0.694 · 2.769n + (0.153− 0.812i) · (0.115 + 0.590i)n+

+ (0.153 + 0.812i) · (0.115− 0.590i)n,

where the constants involved are solutions to cubic equations. In particular the
largest eigenvalue can be written in closed form as

λ1 = 1 +
1

3

(
(27 + 3

√
57)

1
3 + (27− 3

√
57)

1
3

)
∼ 2.769292354.

5.4.2 2× n up to 9× n Boards

For 2×n boards, Table 1 shows 9 state classes, but up-down symmetry reduces
this to 7 up/down classes, matching the recurrence order:

L(2, n+ 7) = 10L(2, n+ 6)− 16L(2, n+ 5) + 31L(2, n+ 4)− 13L(2, n+ 3)+

+ 20L(2, n+ 2) + 2L(2, n+ 1)− L(2, n).

This sequence starts 1, 5, 57, 489, 4125, 35117, 299681, . . ..
For 3×n the number of constructible up/down classes is 21, but the minimal

recurrence order is only 19:

L(3, n+ 19) = 33L(3, n+ 18)− 233L(3, n+ 17) + 1171L(3, n+ 16)−
− 3750L(3, n+ 15) + 9426L(3, n+ 14)− 16646L(3, n+ 13)+

+ 22072L(3, n+ 12)− 19993L(3, n+ 11) + 9083L(3, n+ 10)+

+ 1766L(3, n+ 9)− 4020L(3, n+ 8) + 6018L(3, n+ 7)−
− 2490L(3, n+ 6)− 5352L(3, n+ 5) + 1014L(3, n+ 4)−
− 1402L(3, n+ 3) + 100L(3, n+ 2) + 73L(3, n+ 1)− 5L(3, n).

The recurrences for m ≥ 4 are too long to show here. The number of
constructible up/down classes, minimum recurrence order, and the λm value
from theorem 2 are listed in Table 2 for 1 ≤ m ≤ 9.

5.4.3 Legal Probabilities and Markov Chains

Dividing the number of legal positions L(m,n) by the total number of positions
3mn gives the probability that a random position on an m × n board is legal.
With this interpretation, it is natural to consider the distribution of border
states as a Markov Chain. First, however, it is necessary to extend the border
state space with “illegal” states (one for each partial column size) which repre-
sent partial boards that aren’t pseudolegal, and make all states have outdegree
3. With this modification, the vectors p(m,n) = 1

3mnL(m,n, 0) are probability
distributions over the border states and Pm = 1

3mTm is a probability transition
matrix, so that p(m,n + 1) = Pmp(m,n) describes the change in distribution
of border states when a new random column is added. Since Pm is a stochas-
tic matrix, i.e. the sum of all columns is one, it has a largest eigenvalue of 1.
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size classes order am
m
√
λm

1× n 3 3 0.69412340909080771809 2.7692923542386314
2× n 7 7 0.77605920648443217564 2.9212416045359486
3× n 21 19 0.76692462372625158688 2.9412655443486972
4× n 64 57 0.73972591465609392167 2.9497646496768897
5× n 242 217 0.71384057986002504205 2.9549337288382067
6× n 880 791 0.68921150040083474629 2.9583903342140907
7× n 3453 3107 0.66545979340188479816 2.9608618349040166
8× n 13556 12110 0.64252516474515096185 2.9627168070252408
9× n 55193 49361 0.62038058380200867949 2.9641603664723

Table 2: Small board recurrences.

The corresponding eigenvector has a 1 for the “illegal” state and zero for all
others, i.e. the illegal state is an absorbing state, which is not surprising since
pseudolegality can only get lost under board extension, not regained.

5.5 The Dynamic Programming algorithm

The algorithm starts from the unit state vector L(m, 0, 0) (which has a 1 for
the all-edge state only), and then performs mn linear transformations (the first
m of which operate on edge states, while the rest, of the form Tm,y, operate on
border states) to obtain L(m,n, 0). Instead of keeping exact counts L(m,n, y, s)
as vector elements, we use state class counts modulo some number M close to
264. Running the algorithm dmn log2(3)/64e times with different, relatively
prime, moduli gives us a set of equations

L(m,n) = ai mod Mi,

which is readily solved using the Chinese Remainder Theorem (CRT). This tech-
nique trades off memory and diskspace (which are more constrained) for time.
There is an interesting side-benefit of using chinese remaindering: automatic
error detection. If, for instance, a single bitflip in memory should corrupt one of
the remainders, then reconstruction of the full count from the remainders will
yield a value that’s way off, which will be obvious when comparing with the
approximation formula we’ll derive in a later section.

The heart of the algorithm is an efficient representation of border state
classes, using just 3 bits per point, or 3m bits for a state class. This makes
the standard height of m = 19 fit comfortably in 64-bit integers. The non-
crossing connections can be represented with just 2 booleans per libertyless
stone: whether it has a connection above it, and whether it has a connection
below it. The representation further exploits the fact that neighbouring points
in the border highly constrain each other. Figure 10 shows possible transi-
tions from one point to the next in a “bump-free” 0-state. Upward and down-
ward pointing arrows from the line indicating lack of liberties represent the two
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Figure 10: Intra-border transitions.

boolean flags.
Edges between boxed sets of points indicate the presence of edges from all

points in one set to all points in the other. Next to each point is shown its 3-bit
code. Note that no point has two different transitions to same numbered points.
This reflects the fact that two libertyless adjacent stones have the same color
if and only if they are connected, and a stone with liberties cannot be adjacent
to a libertyless stone of the same color. The algorithm uses code 0 for ‘edge’
points in edge states. Two pieces of information are still lacking; the color of
a libertyless stone at (x, 0), and the color of a libertyless stone on (x − 1, y),
which is not adjacent to the previous border point at (x, y− 1). However, since
we represent state classes rather than states, we can assume that (x − 1, y), if
non-empty, is always white. In this case, the color of a libertyless stone at (x, 0)
can be stored in the boolean indicating connections above, since the latter is
always false. If (x − 1, y) is empty, then we can assume any stone on (x, 0) is
white. If both (x − 1, y) and (x, 0) are empty then we can normalize the color
of e.g. the bottom-most stone on the border.

Note that this is the lowest of 3 levels of graphs considered in this paper: a
game of Go is a path in the game graph. whose nodes are paths in the border
state graph, whose nodes are paths in the 11-node intra-border graph2.

In order to compute L(m,n, y + 1) = Tm,yL(m,n, y), the algorithm loops
over all state-count pairs (s, i) in L(m,n, y), computes the 2 or 3 successors s′ of

2Ignoring such details as edge states/points and the cross-column transition for non-0
states.
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s, and stores the new pairs (s′, i) in some data structure. Matching pairs (s′, i)
and (s′, j) need to be combined into a single pair (s′, i + j mod M), which is
easy if all states can be kept in memory. For large computations, like m = 19,
this is not possible and the state-count pairs need to be stored on disk. To allow
for efficient combining of states, we collect as many pairs as possible in memory,
before flushing them all to disk in sorted order. To save space, we store only the
differences between consecutive states (using 7 bits per byte, with the 8th bit
indicating the last byte). Note that a state can appear in as many files as it has
predecessors in L(m,n, y). The total number of state-count-pairs in all output
files is thus larger than the number of (y+1)-states by a factor in the range [1, 3].
This redundancy is the average number of files in which a (y + 1)-state occurs.
Merging all output files while combining like pairs removes this redundancy and
produces the required L(m,n, y + 1). To keep redundancy small, we want the
different predecessors of a state to be close together in the input ordering, so
that combination can take place before a memory flush. This ordering depends
on how the m 3-bit fields are joined into a 3m bit integer. We do this in different
ways, such that the most variable fields, namely, those close to y, end in up the
less significant bits of the 3m bit integer.

It turns out that the computation of Tm,y as described above, precisely fits
the Google MapReduce framework described in [13]. Our map function maps
a state-count pair (s, i) to a list of 2 or 3 new pairs (s′, i), while our reduce
function merely sums modulo M .

Having completed all mn linear transformations, which gives us L(m,n, 0),
we then sum all counters of legal states to get the desired L(m,n) mod M result.

5.6 Complexity

The main factor in both time and space complexity is the number of state
classes s. This may be upperbounded by ignoring the connection constraints
(equivalent to balancing parentheses) and computing the largest eigenvalue of
the intra-border transition matrix, which turns out to be λ ∼ 5.372 (the largest
root of (λ − 2)(λ2 − 5λ − 2)). The number of paths of length m through the
intra-border transition graph, and hence s, is therefore bounded by O(λm). We
thus need at most λm(3m + 64) bits plus the overhead for the datastructure
which is at most linear, for a space complexity of O(mλm).

For time complexity, we have the product of the number of moduli, which
is dmn log2(3)/64e, the number mn of passes, the number O(λm) of states, and
the amount of work O(m) per state, which results in time O(m3n2λm).

5.7 Results

Table 5.7 shows the number of legal positions.
The L(17, 17) computation took over 8000 CPU-hours and 3TB of disk space

generously provided by the Opteron based Linux Cluster of the INS group
at the Center for Mathematics and Computer Science (CWI) in Amsterdam.
Paul Leyland used the General Number Field to find 3 prime factors including
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n #digits L(n, n)
1 1 1
2 2 57
3 5 12675
4 8 24318165
5 12 414295148741
6 17 62567386502084877
7 23 83677847847984287628595
8 30 990966953618170260281935463385
9 39 103919148791293834318983090438798793469

10 47 96498428501909654589630887978835098088148177857
11 57 793474866816582266820936671790189132321673383112185151899
12 68 5777425848951323899823797030748399932728721075699118965594265

1331169
13 80 3724979230768639644229490476702451767424915794820871753325479

9550970595875237705
14 93 2126677329003662242497893576504405980988058610832691271966238

72213228196352455447575029701325
15 107 1075146430836138311876841375486612380973378882032784440276460

1662870883601711298309339239868998337801509491
16 121 4813066963822755416429056022484299646486874100967249263944719

599975607459850502222039591149331431805524655467453067042377
17 137 1907938891962819920460572618185046522015105833814792224396726

9231944059187214767997105992341735209230667288462179090073659
712583262087437

18 153 6697231142888292128927401888417065435099377806401787328103183
3769694562442854721810521432601277437139718484889097011183628
3470468812827907149926502347633

19 171 2081681993819799846994786333448627702865224538845305484256394
5682092741961273801537852564845169851964390725991601562812854
6089888314427129715319317557736620397247064840935

Table 3: Number of legal n× n positions.
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n L(n, n)
18 ∼ 0.0173 · 3324 ∼ 6.6 · 10152

19 ∼ 0.01196 · 3361 ∼ 2.082 · 10170

29 ∼ 1.2 · 10−4 · 3841 ∼ 2.2 · 10397

39 ∼ 2.4 · 10−7 · 31521 ∼ 1.2 · 10719

49 ∼ 9 · 10−11 · 32401 ∼ 3.5 · 101135

59 ∼ 7 · 10−15 · 33481 ∼ 5 · 101646

69 ∼ 1.1 · 10−19 · 34761 ∼ 4 · 102252

79 ∼ 3 · 10−25 · 36241 ∼ 2 · 102953

89 ∼ 2 · 10−31 · 37921 ∼ 4 · 103748

99 ∼ 2 · 10−38 · 39801 ∼ 4 · 104638

Table 4: Estimated Number of legal n× n positions.

46542825577 and 2518026579235045782504604934907161589529. The L(18, 18)
computation took over 50000 CPU-hours and 4PB of disk IO, generously pro-
vided by the Intel x86 Linux Cluster of the IAS School of Natural Sciences
in Princeton. The smaller of two prime factors found with Dario Alejandro
Alpern’s ECM implementation is 7176527950749135946361. The L(19, 19) com-
putation took over 250000 CPU-hours and 30PB of disk IO, generously provided
by the Intel x86 Linux clusters at the IAS School of Natural Sciences in Prince-
ton, the IDA Center for Communications Research, also in Princeton, and on
a HP Helion Cloud server. The first 7 of 8 prime factors are 5, 401, 4821637,
964261621, 2824211368611548437, 2198466965002376001759613307922757, and
65948646836807567941440434317404197.

5.8 Heuristic Sampling Results

Pang Chen [9], improving on earlier work of Knuth and Purdom, developed an
elegant unbiased estimator of treesize that takes advantage of heuristic knowl-
edge in the form of a stratifier. This is a function on tree nodes which must
decrease when following tree edges, and which should correlate with subtree size,
since this determines the estimator variance. Pang demonstrated the power of
his Heuristic Sampling algorithm on the problem of counting uncrossed knight’s
tours on a chess board. As stratifier he used the number of unvisited squares
reachable by currently valid knight moves.

We applied his technique to the problem of counting legal positions by esti-
mating the size of the tree of successive border states to depth n2. As stratifier
we use the pair (remaining depth, m minus the number of libertyless strings).
For each boardsize of interest, we took the average of between 105 and 107 runs
of the Heuristic Sampling algorithm, with the results shown in Table 4.
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Figure 11: Knight subset of points on 5× 5 and 10× 10 boards.

5.9 Asymptotic Bounds

Let K denote the set of points on an m × n board, reachable from one (3,3)
point with ‘orthogonal’ knight moves, as shown in Figure 11. For simplicity,
assume that m and n are divisible by 5, so that set K has size mn/5 (for other
m,n, |K| equals mn/5 rounded up or down). We use K to derive both lower
and upper bounds on L(m,n).

Theorem 3 For m,n divisible by 5,

3
4mn

5 (1− 2

81
)

2(m+n)
5 ≤ L(m,n) ≤ 3mn(1− 2

81
)

2(m+n)
5 (1− 2

243
)

mn−2(m+n)
5 .

Proof. For the lower bound, color the points in K empty, and all other
points randomly. Then illegality can only arise at the 2(m + n)/5 points on
the edge that neither belong to K nor neighbour K. For each such point, the
probability of being a libertyless stone is 2 · 3−4 = 2/81, and these events are
independent, so the whole position is legal with probability (1− 2/81)2(m+n)/5.

For the upper bound, we color all points randomly and only check if any
point in K is a one-stone string without liberties. For each of the 2(m + n)/5
edge points of K this happens with probability 2/81 and for each of the mn/5−
2(m+ n)/5 interior points of K this happens with probability 2 · 3−5 = 2/243.
Again, these events are all independent. •

5.10 The base of liberties

The previous section shows that L(m,n)1/mn is roughly between 34/5 ∼ 2.4
and 3(1 − 2

243 )1/5 ∼ 2.995. In this section we prove that L(m,n)1/mn in fact
converges to a specific value L, which we call the base of liberties. This is the
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2-dimensional analogue of the 1-dimensional growth rate λ1 ∼ 2.7693 derived
in Section 5.4.1.

Fix m and n. Consider any M = qmm + rm and N = qnn + rn with
0 ≤ rm < m, 0 ≤ rn < n. Since tiling legal positions together preserves legality,
we have

L(M,N) ≥ L(m,n)qmqnL(m, rn)qmL(rm, n)qnL(rm, rn).

This proves

Theorem 4 lnL(m,n) is superadditive in both arguments.

Theorem 5 limmin(m,n)→∞ L(m,n)1/mn converges to some value L.

Proof. We extend the proof of Fekete’s theorem to 2 dimensions:

lim inf
M,N→∞

lnL(M,N)

MN
≥ lim inf
M,N→∞

qmqn
MN

lnL(m,n) +
qm
MN

lnL(m, rn)+

+
qn
MN

lnL(rm, n) +
1

MN
lnL(rm, rn) =

lnL(m,n)

mn
.

Since m and n were arbitrary, we get

lim inf
M,N→∞

lnL(M,N)

MN
≥ sup
m,n≥1

lnL(m,n)

mn
,

hence lnL(m,n)
mn converges to some value lnL. •

5.11 An Asymptotic Formula

Theorems 5 and 2 together imply that a
1/mn
m λ

1/m
m , and hence λ

1/m
m (since n

can go to infinity arbitrarily faster than m), converge to L. Table 2 confirms
that the λm values behave roughly as Lm for some L. In this section we extend
Theorem 2 to derive a much stronger result, albeit contingent on a conjecture
about how fast the subdominant terms disappear. The central idea is that since
ln(L(m,n)) is asymptotically linear in n for each m, and symmetric, it can be
expected to be asymptotically bilinear in m and n.

The parameters guaranteed by Theorem 2 may be obtained from L() as
follows:

Corollary 4

λm = lim
n→∞

L(m,n+ 1)

L(m,n)
,

am = lim
n→∞

L(m,n)

λnm
,

r(m,n) =
L(m,n)

amλ
n
m

− 1.
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In practice the φm values are small enough that a number of am, λm, and
r(m,n) can be computed with good accuracy from the L(m,n) values that are
practical to compute by the dynamic programming algorithm. Before looking
further at these we derive a number of lemmas about symmetric and asymp-
totically linear functions. Recall that the discrete derivative ∆ is defined by
∆f(n) = f(n+ 1)− f(n).

First a discrete integration result needed in Lemma 15;

Lemma 13 If ∆g(n) = O(φn) for some 0 ≤ φ < 1 then g(n) = γ + O(φn) for
some γ. Likewise ∆g(n) = O(nφn) implies g(n) = γ +O(nφn) for some γ.

Proof. Since
∑
i≥n ∆g(i) = O(

∑
i≥n φ

i) = O(φn), limn−>∞ g(n) converges
to some value γ, and the conclusion follows. The other case is similar, with

convergence implied by
∑
i≥n iφ

i = nφn

1−φ + φn+1

(1−φ)2 = O(nφn). •

Lemma 14 Let x(m,n) = u(m) + nv(m) + w(m,n) be symmetric. Then

∆2v(n) = v(n+ 2)− 2v(n+ 1) + v(n) = w(n+ 1, n+ 2)− w(n+ 2, n+ 1)

+w(n, n+ 1)− w(n+ 1, n)− w(n, n+ 2) + w(n+ 2, n)

and

∆u(n) = −nv(n+ 1) + (n+ 1)v(n)− w(n+ 1, n) + w(n, n+ 1).

Proof.

0 = x(n+ 2, n+ 1)− x(n+ 1, n+ 2)

+ x(n+ 1, n)− x(n, n+ 1) + x(n, n+ 2)− x(n+ 2, n)

= u(n+ 2) + (n+ 1)v(n+ 2) + w(n+ 2, n+ 1)

− u(n+ 1)− (n+ 2)v(n+ 1)− w(n+ 1, n+ 2)

+ u(n+ 1) + nv(n+ 1) + w(n+ 1, n)− u(n)− (n+ 1)v(n)− w(n, n+ 1)

+ u(n) + (n+ 2)v(n) + w(n, n+ 2)− u(n+ 2)− nv(n+ 2)− w(n+ 2, n)

= v(n+ 2)− 2v(n+ 1) + v(n)− w(n+ 1, n+ 2) + w(n+ 2, n+ 1)

− w(n, n+ 1) + w(n+ 1, n) + w(n, n+ 2)− w(n+ 2, n),

0 = x(n+ 1, n)− x(n, n+ 1)

= u(n+ 1) + nv(n+ 1) + w(n+ 1, n)− u(n)− (n+ 1)v(n)− w(n, n+ 1).

•

Lemma 15 If additionally all w() terms in the above are O(φn) for some φ < 1,
then there exist α, β and λ such that

v(m) = β + λm+O(φm),

u(m) = α+ βm+O(mφm).
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Proof. Lemma 14 together with the assumption give ∆2v(n) = O(φn).
Applying Lemma 13 once to g(n) = ∆v(n) gives ∆v(n) = λ + O(φn) and
applying it again to g(n) = v(n)− λn gives v(n) = β + λn+O(φn).

Lemma 14 also gives

∆u(n) = −nv(n+ 1) + (n+ 1)v(n)− w(n+ 1, n) + w(n, n+ 1)

= −n(β + λ(n+ 1) +O(φn+1)) + (n+ 1)(β + λn+O(φn)) +O(φn)

= β +O(nφn).

A third application of Lemma 13 to g(n) = u(n)−βn gives u(n) = α+βn+
O(nφn). •

Corollary 5 Under the assumptions above, for n = Θ(m),

x(m,n) = α+ β(m+ n) + λmn+O(mφm).

Taking natural logarithms of the expression for L(m,n) in Theorem 2 we
have

ln(L(m,n)) = ln(am) + n ln(λm) + ln(1 + r(m,n)),

which is in the expected form with x(m,n) = ln(L(m,n)), u(m) = ln(am),
v(m) = ln(λm), and w(m,n) = ln(1 + r(m,n)). The question is whether ln(1 +
r(m,n)) satisfies the conditions on w() in the lemmas.

Although one can show that for fixed m, ln(L(m,n))−α−β(m+n)−λmn =
Ω(n), we do expect this quantity to vanish for proportional n:

Conjecture 1 r(m,n) = O(φm) for some φ < 1 and n = Θ(m).

(This should be read as: for any constant c ≥ 1, there exists a φ < 1 such
that r(m,n) = O(φm) for all m/c ≤ n ≤ cm.) This assumption suffices to apply
Corollary 5 to lnL(m,Θ(m)), which, after exponentiation, gives

Theorem 6 Conjecture 1 implies

L(m,n) = A Bm+nLmn(1 +O(mφm))

for some constants A, B, φ < 1, and n = Θ(m).

The constants A, B, and L can all be computed as limits of expressions
involving legal counts of square and almost-square boards.

Corollary 6 (contingent on Conjecture 1)

L = lim
n→∞

L(n, n)L(n+ 1, n+ 1)

L(n, n+ 1)2
,

B = lim
n→∞

L(n, n+ 1)

L(n, n)Ln
= lim
n→∞

L(n, n)

L(n, n− 1)Ln
,

A = lim
n→∞

L(n, n)

B2nLn2 .
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n L(n, n+ 1)
1 5
2 489
3 321689
4 1840058693
5 93332304864173
6 41945191530093646965
7 166931297609667912727898521
8 5882748866432370655674372752123193
9 1835738613899845421140262364853644706891109

10 5072588588647327658457862518216696854885169490987149
11 124118554774307129694783556890846966815009879092863579679259393
12 26892554058860272116972562366415920138007095980551558908000982332

405743333
13 51595955665685681166597566866805181435596339502695699293823422273

656970477373415200373
14 87657189470474043577625386556165159467857790316618825847295568112

5289495868953613359454403019145877
15 13187051224464575929788847232994787058026625692448568172845808657

8687538959472921550847035733890182662513180743513
16 17566939874522767507492043332778736637455188609843447383651064715

9450821039563378374569811240252763776406712988379278644250456677
17 20722054276190233030395875202363901217542740727187846094339981969

33282608067036314403465202963700297341152216286750576593627459392
979397487964077

18 21645008927907827531439545348046842446969487357646989370951775056
32614907511229224633397451785779540083245864195480719950197794545
84564790800309660950831580481393

19 20020319408629769567144797301355785099698625915243038261123500773
48906207401543395415870817978902800457543055297838678738457045887
23770851289942216392403148498022616435740968427261

Table 5: Legal counts of almost square boards.
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Figure 12: ln(1 + r(n, n)) and friends

Of course L could also be approximated according to its definition as L(n, n)n
−2

but the above formula offers much better convergence. Using the almost-square
legal counts in Table 5.11, as computed by our algorithm, our best estimates
using L(19, 19), L(19, 18), and L(18, 18) are

L ≈ 2.975734192043357249381,

B ≈ 0.96553505933837387,

A ≈ 0.8506399258457145.

Table 6 shows the rapid convergence of L(n, n)L(n+ 1, n+ 1)/L(n, n+ 1)2.
Although the formula for L(m,n) is only asymptotic, the convergence turns

out to be quite fast. Compared to the exact results in Table 5.7, it achieves
relative accuracy 0.99993 at n = 5, 0.99999999 at n = 9, and 1.00000000000023
at n = 13. It is consistent with all the simulated results. For n = 99 it gives the
same result of 4 · 104638. Accuracy is also excellent far away from the diagonal.
E.g., at L(7, 268), the relative accuracy is still 1.0000007, witnessing the wide
range of application of Theorem 6.

6 Comparison with other games

In Go, the question of what constitutes a legal position is very easy to decide.
Not so in some other popular games. In Chess there are so called problems
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n L(n, n)L(n+ 1, n+ 1)/L(n, n+ 1)2

1 2.28
2 3.0
3 2.979
4 2.9756
5 2.975732
6 2.9757343
7 2.9757341927
8 2.9757341918
9 2.975734192044

10 2.975734192044
11 2.975734192043350
12 2.975734192043355
13 2.97573419204335727
14 2.975734192043357255
15 2.97573419204335724932
16 2.975734192043357249362
17 2.9757341920433572493811
18 2.97573419204335724938097

Table 6: Convergence to the base of liberties L.

of retrograde analysis, which ask how a position could have possibly arisen.
Anyone having tried these problems can appreciate their complexity. But even
in as simple a game as Connect-4, the problem of deciding if a position could
have legally arisen, can be shown to be NP-hard [12]. In such cases we cannot
hope to find exact counts and need to settle for upper bounds.

For Chess, a straightforward Huffman encoding (ignoring history attributes
such as castling rights) gives an upperbound of 232·1+2(8·3+6·5+2·6) = 2164 ∼
2.3·1049 positions, while a more refined counting method [4] gives an upperbound
of 4.5 · 1046, less than half of L(10, 10).

For Connect-4 played on a board with n columns of height m, each column
can be encoded in m+ 1 bits, giving an upperbound of 2n(m+1) positions. For
the standard board size of 7x6, Edelkamp and Kissmann obtained the exact
count of 4531985219092 [15], about 11 times L(5, 5).

Gomoku, also known as Go-bang, is more closely related to Go. The goal
in Gomoku is to obtain 5 consecutive stones of one’s color along an orthogonal
or diagonal line. We could thus define a legal position as one in which no 5
same colored stones appear in a row (ignoring the required near-equality of
numbers of black and white stones, or allowing the option of passing). This
could be computed exactly with a Dynamic Programming algorithm, with states
comprising a 4 row thick border. The resulting state space size of 34m however
limits the approach to m = 6 or so. The alternative of using the inclusion-
exclusion formula to count the illegal positions is similarly limited, since a 6×
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m \ n 1 2 3 4 5 6
1 1 9 907 2098407841 ∼ 1031 ∼ 10100

2 386356909593 ∼ 1086 10∼5.3·10
2

3 10∼1.1·10
3

Table 7: Exact and estimated number of games on small boards.

6 board already has 32 possible 5-in-a-rows, all subsets of which have to be
considered.

We note that in contrast to Theorem 4, the function lnL(m,n) for Gomuku
is subadditive, from which Theorem 5 can be similarly derived. Under a naive
assumption of independence of events, the “base of gomoku” would have a value

of 1 + 2(1− 1
3

4
)4 ∼ 2.90, much less than for Go.

7 Counting games

7.1 Exact values

By Lemma 2, the number of games equals the number of simple paths in the
game graph. For very small boards, we can find these numbers by brute force
enumeration, as shown in Table 7.

7.2 Approximation

Just as with legal positions, we can estimate the size of the game tree, and
hence the number of games, using Heuristic Sampling. A natural stratifier,
similar to the one used by Pang Chen for uncrossed knight tours, is the number
of positions reachable through currently unvisited positions. Using this stratifier,
we obtained the estimates shown in Table 7, with the location of the ∼-symbol
indicating (un)certainty about the order of magnitude.

7.3 Upper bounds

We can relate the number of simple paths to the product of outdegrees. First
we need a technical lemma.

Lemma 16 On boards larger than 1 × 1, every node in the game graph has
outdegree at least 2.

Proof. For the empty position, the Lemma holds by assumption on board
size. For other nodes, consider one of its strings. If this string has at least
two liberties, then these provide two legal moves for its owner. If it has only
one liberty, then the opponent can move there to capture, while a move by the
owner there cannot result in a single-stone suicide. •
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m \ n 1 2 3 4
1 0 2.4 2.8 3.512
2 3.368 4.728 6.208
3 6.801 8.933
4 11.741

Table 8: Average outdegree on small boards.

Now consider the game tree, consisting of all simple paths. We want to avoid
internal nodes with only one child, so we make them binary by duplicating
their child subtree. By Lemma 16, the resulting tree still has no more than
(
∏
v outdeg(v))/mindeg leaves, where mindeg ≥ 2 is the minimum outdegree.

Furthermore, since the tree is at least binary, it must have fewer internal nodes
than leaves. This proves

Lemma 17 The number of games on an m× n board with, mn > 1, is at most∏
v outdeg(v).

By Corollary 1, this is in turn bounded by (2mn)L(m,n). Most positions have
about mn/3 empty points though, and some of the moves are illegal self-loops,
so the average outdegree is much less than 2mn.

Theorem 7 The number of games on an m× n board is at most (mn)L(m,n).

Proof. The Theorem holds trivially for mn = 1, which has only 1 position
and 1 game, and for mn = 2, which has only 5 positions and 9 games. Table 8
shows that for other small boards, the average outdegree is smaller than mn.
By the Chernoff bounds on binomial tails, the fraction of legal positions with at
least mn/2 empty points diminishes exponentially on larger boards, for which
the average outdegree is close to 2mn/3. To complete the proof, note that the
product of outdegrees equals the L(m,n)’th power of their geometric average,
which is upperbounded by the arithmetic average. •

This bound is quite crude for small boards. For example, the 1 × 3 board
has an average outdegree of 42

15 = 2.8, an outdegree product of 3 · 219 = 1572864
which is bounded by 315 = 14348907, while the actual number of games is only
907.

We conjecture that for any mn ≥ 3, the number of games is less than
(2mn/3)L(m,n). The fact that legal positions have on average more empty points
than arbitrary positions should be amply offset by the removal of self-loops and,
more importantly, the widening gap between geometric and arithmetic averages.

7.4 Lower bounds

Note that the game graph need not be Hamiltonian, and constructing a game vis-
iting even 2mn legal positions is a major challenge (achievable for one-dimensional
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boards as we’ll see later). We can still get a nontrivial lower bound by visiting
only a highly structured subset of legal positions.

Theorem 8 Suppose the mn points on the board can be partitioned into 3 sets
B,W,E such that

• |B| = |W | = k, |E| = l = mn− 2k,

• B and W are connected,

• each point in E is adjacent to both B and W .

Then there are at least (k!)2
l−1

possible games, all lasting over k2l−1 moves.

Proof. First we recall some properties of binary Gray codes. The 1 bit Gray
code G1 is 0, 1, while Gl+1 consists of Gl in which each bitstring is extended
with a 0, followed by the reverse of Gl in which each bitstring is extended with
a 1. Thus, G2 = 00, 10, 11, 01 and G3 = 000, 100, 110, 010, 011, 111, 101, 001.
Successive strings differ in exactly one bit, and the sequence of bits flipped
is the so-called binary carry schedule 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, . . .. Consider
the successive changes in Hamming weight. Denote an increment by + and a
decrement by −. Since the initial bit is flipped every other step, every 4i-th
sign is + while every 4i+ 2-nd sign is −. As a consequence, Gl has 2l−1−1 sign
changes. Furthermore, the initial bit is 1 inbetween a change from + to −, and
is 0 inbetween a change from − to +.

Let {Ei}0≤i<2l be the sequence of all subsets of E corresponding to the l-bit
Gray code. Let E+

i be the position with only black stones on B∪Ei and E−i the
position with only white stones on W ∪ (E \ Ei). By the connectivity assump-
tions, these positions have only one string. See Figure 13 for an illustration of
the 3 bit Gray code and corresponding positions.

We now construct games as follows: first play from the empty board to E+
0

in one of k! ways. Then a black move takes us to E+
1 , and another takes us

to E+
2 . Since the sign changes to −, we first move from E+

2 to E−2 by letting
white occupy all of W in one of k! ways and then occupy E \ E2, capturing
black. Now a white move takes us to E−3 . In this way we transform each + into
a black move, each − into a white move, and each sign change into a capture
sequence. We get k! choices at the start, and at every sign change, for a total
of 2l−1 times.

It remains to show that no position is repeated. All E+
i , E

−
i positions are

unique by construction. During a change from E+
i to E−i , by the above obser-

vation on sign changes, the point corresponding to the initial bit of the Gray
code is black, so all intermediate positions can be uniquely associated with E+

i .
Similarly, during a change from E−j to E+

j , that same point is white and all

intermediate positions can be uniquely associated with E−i . •

Corollary 7 There are between 22
n2/2−O(n)

and 22
n2 log 3+log log n+O(1)

Go games
on an n× n board,
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Figure 13: 3-bit Gray code and corresponding positions.
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Figure 14: Board partition for games lower bound.

Proof. On a square board of size n ≡ 3 mod 4, the partition shown in
Figure 14 has parameters k = |B| = |W | = n− 1 + (n− 2)(n+ 1)/4 and l = 2 +

(n− 2)(n− 1)/2, giving a lower bound of (k!)2
l−1

= 22
n2/2−3n/2+log k+log log k+O(1)

.
The upper bound follows from Theorem 7. •

Corollary 8 The number N of 19× 19 Go games is

(103!)2
154

≤ N ≤ 3610.012·3
361

,

in binary

22
163

< N < 22
569

,

and in decimal
1010

48

< N < 1010
171

.

In one dimension, the conditions of Theorem 8 can only be met by taking
E a singleton set, giving a useless bound. Fortunately, the highly structured
nature of one-dimensional boards allows us to prove much better bounds.

Theorem 9 There are at least 22
n−1

games on an 1×n board with n ≥ 2, which
last from 3 · 2n−1 − 5 up to 2n+1 − 4 moves.

Proof. Number the points 0, 1, . . . , n − 1 from left to right. To any non-
empty legal position we can assign a predecessor in which the leftmost stone, say
on point i, is replaced by stones of the opposite color on points 0, 1, . . . , i − 1.
If we assign to each position the number

∑
i occupied 2i, then the predecessor

of a position is indeed numbered one less. The predecessor relation defines a
spanning tree of the game graph which we call the left-capturing gametree, in
which each legal position occurs at a depth equal to its number. Figure 15 shows
the left-capturing gametree for n = 3. This is a binary tree; each node has 0,1,
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0 21

Figure 15: Left capturing gametree.

or 2 children, since at most 2 positions can have the same predecessor. The
two positions at maximum depth 2n − 2 have a single string occupying all but
the leftmost point. The path to such a position has 2n−2 positions with point
0 occupied and point 1 empty. Each of these latter positions could be skipped
by moving directly from its predecessor to its successor, yielding 2n−2 binary
choices. To double that amount, we consider games following both paths. For
odd n ≥ 3, we can move directly from the end of one path, e.g. .XXXX to the
second node O.... of the other path. For n = 2, the Theorem is easily seen
to hold. For even n ≥ 4, we can move from the 3rd-to-last node of one path,
e.g. ..XXXX, to the skippable X.XXXX, to the third node .O.... of the other
path. Either case gives us 2n−1 − 1 binary choices, since we lose one choice at
the start of the second path. However, we also have a choice of which path to
follow first, giving us the required 2n−1 choices. The shortest game is reached
by skipping all on an even-sized board, while the longest game is reached by
skipping nothing on an odd-sized board. •

8 Hamiltonian games

The previous section showed the existence of games visiting a large fraction
of all positions. The question arises if and when it is possible to have games
encompassing all L(m,n) legal positions. Inspired by graph theory, we call such
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games, as well as the board they’re played on, Hamiltonian.

Theorem 10 Only one-dimensional boards can be Hamiltonian.

Proof. Consider a 2×2 square on an m×n board with m,n ≥ 2. There are
a total of 10 positions with all points outside the square being black, and having
in the square either two opposite black stones or two adjacent black stones and
one white stone. Yet there are only a total of 8 positions where they can move
to, namely 4 positions with every point except one in the square being black,
plus the 4 positions with only two adjacent white stones in the square. •

The question remains which one-dimensional boards are hamiltonian. This
means that the graph G(1, n) must have a directed Hamiltonian path starting
at the empty position. While G(1, 1) trivially satisfies this, the graph G(1, 2) in
Figure 1 does not, since removing the starting node disconnects it.

One sufficient condition for such a path is for the graph minus the empty
node to have a directed Hamiltonian cycle, since we can break the cycle at any
1-stone position and insert the empty node there. An even stronger condition
is to have each position opposite its reversed color version on the cycle. It turns
out that all cycles on G(1, 3) and G(1, 4) are of this form; it suffices to show
only half of the cycle, from which the other half can be obtained by reversing
colors:

O.. O.O .X. XX. ..O X.O .OO

O... O..O O.X. .XX. XXX. ...O X..O X.X. X.XX .O..

.O.X OO.X ..XX O.XX OO.. OO.O ..X. .OX. .O.O .OOO

For larger graphs it becomes impossible to find such cycles manually, and
one has to turn to tools such as Concorde [5], for solving Traveling Salesman
Problems.

Here’s how we translate our directed color symmetric cycle problem into an
undirected TSP. For each non-empty node v ∈ G(m,n) whose leftmost stone is
white, we create the the 4 nodes and 4 edges shown in Figure 16. Then, for every

move (u, v) where u’s leftmost stone is white, we create edges {uout
0 , vin

0 } and

{uout
1 , vin

1 } if v’s leftmost stone is white, or edges {uout
0 , win

1 } and {uout
1 , win

0 }
if v’s leftmost stone is black and w is its color reversed version. All these intra-
gadget edges have cost 2. Finally, we cross the pair of 1-edges in one gadget.
Call the resulting weighted undirected graph on 4(L(m,n)−1)/2 nodes T (m,n).

Lemma 18 G(m,n) minus the empty node has a color symmetric cycle if and
only if T (m,n) has a cycle of cost 3(L(m,n)− 1)/2.

Proof. Each half of a color symmetric cycle in G(m,n) corresponds to
a cycle in T (m,n) in which each inter-gadget 2-edge is followed by the top 0-
edge, a vertical 1− edge, and finally the bottom 0 edge. The crossed pair of
1-edges ensures proper completion of the cycle. The total cost of this cycle is
2 + 0 + 1 + 0 = 3 per gadget as claimed. If we attribute to each gadget half the
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Figure 16: A gadget.

cost of all adjacent traversed 2-edges plus the cost of its traversed 1-edges, then
we see that only the above traversal achieves a cost of 3. Thus a cycle of cost
3(L(m,n)− 1)/2 traverses each gadget exactly once, in an order which yields a
color symmetric cycle in G(m,n). •

Using this lemma, we found the following 1x5 cycle:

O.... O...O .X..O .XO.O O.O.O O.OOO .X... .X.O. XX.O.

..OO. O.OO. .XOO. .X..X XX..X ..O.X O.O.X .XO.X .X.XX

XX.XX ..O.. .XO.. O.O.. O.OX. .X.X. XX.X. ..OX. X.OX.

.OOX. X..X. X..XX X.O.. X.O.X .OO.X OOO.X ...XX .O.XX

.OO.. OOO.. OOOO. ....X O...X O..XX OO.XX ..XXX O.XXX

OO... OO..X ..X.X O.X.X .XX.X XXX.X ...O. X..O. X.OO.

.OOO. .OOOO

as well as 1x6 and 1x7 symmetric cycles which are too long to show here.

9 Open problems

Theorem 6 and its corollaries are contingent on Conjecture 1. Proving this
would be important but might require a deep understanding of the structure of
the border state graphs and their spectral properties.

Game graphs are an interesting object of study for graph theorists. We
conjecture that all G(1, n) with n > 2 have color symmetric cycles.

Finally, a significant gap remains in the double exponent between the upper
and lower bound on the number of games.
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