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1
Introduction

The papers collected in subsequent chapters give a fair representation of my
research at CWI and the several places I visited abroad. The diversity in subject
matter reflects on the one hand the multitude of interests I like to pursue and
on the other hand the failure to remain focussed on a single problem area in
which to make more extensive explorations.

With such diversity, a title as general as “Aspects of Algorithms and Com-
plexity” seem inevitable, but also holds a promise of finding the links and
relations that connect them. To this end, let us consider the concepts involved
in some more detail.

1.1 Algorithms

An algorithm is normally understood to be a “recipe” for solving a (compu-
tational) problem. That is, a step by step explanation of how to get from a
problem instance to a solution. A classical example is the problem of sorting.
Here, a problem instance is a list of numbers, like 5, 2, 8, 3, 5, and a solution is a
permutation (re-ordering) of that list, in which the numbers are non-decreasing,
like 2, 3, 5, 5, 8. The problem instance is called the input and the solution the
output. The solution is also sometimes called the answer, in particular when
the problem instance can be considered a question.

The word ‘algorithm’ is formally reserved to those recipes that always yield
an output in a finite number of steps, in other words, that always terminate.
The problems considered in Chapters 2, 3, and 4 are of this type. But the word
is sometimes also used for processes that aren’t even supposed to terminate,
like the workings of an elevator. For such processes, the word ‘protocol’ is more
appropriate. A protocol is like a rule of behaviour. The goal of a protocol is
not to find a solution to a problem instance, but rather to insure a particular,
desirable, behaviour in a system. An elevator protocol must insure for instance
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that people get to the floor they want to in a reasonable amount of time. A
research field known as ‘distributed computing’ is devoted to the study of algo-
rithms and protocols for communication, cooperation and competition between
multiple, more or less independent, computing agents. Chapters 7,8, and 9 deal
with some problems of this type.

As mentioned earlier, an algorithm prescribes a sequence of steps to lead
from a given input to an output. This still leaves open the questions of what a
step is, how the input is given, and finally how the output is obtained and/or
interpreted. We see that an algorithm is not complete without a specification
of its operating environment. The classical notion of an algorithm is that of a
program running inside a box called computer, with some input device reading
the input symbol by symbol, and an output device writing the output symbol
by symbol. In this framework, the input and output are words of some input,
respectively, output language. A so called ‘machine model’ specifies the form
of programs that a box will run and what operations it can perform in a single
step. In some models the steps are executed strictly in sequence, one after the
other. These models are said to be sequential. A parallel model is one where
the steps are not necessarily executed in sequence, but is also used for models
that are in a sense more powerful than the simplest sequential ones.

The computer will have some form of storage space of unlimited capacity,
like a tape, where intermediate results are kept. The program usually consists
of a list of instructions executed in order except for branches, and each instruc-
tion modifies only a small fixed-size part of the storage. This is basically the
machine model that Alan Turing envisioned as the machine-equivalent of a hu-
man working with pen and paper, and known as a ‘Turing machine’. Turing’s
goal was to have a formal basis for deciding what it means for an input-output
function to be ‘computable’. He could probably not imagine the large variety
of alternative machine models that have been proposed since as a subject of
study in its own right. One such model is investigated in Chapter 5.

We can also view the Turing machine as a box that’s travelling over a single
tape that initially holds the input, and whose contents is taken as output when
the box goes into a halting state. We can then replace the tape by an arbitrary
graph and allow the box to drop various types of markers on the nodes to get a
class of algorithms known as ‘bug automata’. These are well suited to labyrinth
exploration problems and come into action in Chapter 3.

In a more physical view, algorithms can take the form of circuits built from
wires and gates. Since the number of inputs of a circuit is hard-wired and thus
fixed, it is more precise to say that an algorithm corresponds to a family of
circuits, working on larger and larger inputs. The gates are the steps of the
algorithm, and are clearly not executed in sequence. In Chapter 4 we will see
an example of a circuit family.

1.2 Complexity

For many problems studied in theoretical computer science, the question of
whether it can be solved at all is not interesting, as the answer is invariably yes.
The question becomes interesting only when the class of algorithms considered
is reduced. Usually we are interested in those algorithms that are the least
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complex. A complexity measure is then a way of quantifying how complex
an algorithm is. One type of complexity that is of great practical importance
is conceptual complexity: how hard is it to understand an algorithm? This
however is rather difficult if not impossible to quantify and thus appears only
in informal discussion.

If the algorithm can be written down as a sequence of symbols in a standard
language, then an obvious complexity measure is the length of that sequence.
Combining this with the idea of looking at all algorithms and inputs that pro-
duce a given output leads to a very interesting notion of the inherent description
complexity of that output. The theory dealing with this notion, known under
the names of Kolmogorov Complexity and Algorithmic Information Theory,
will not be dealt with in this thesis.

Most complexity measures concern the use of resources during execution
of the algorithm, the two most important ones being time and space. On a
sequential machine, time is simply measured as the number of steps taken to
go from the input to the output. On parallel machines, a parallel notion of time
is introduced that reflects the simultaneous execution of steps. For the total
number of steps executed, irrespective of timing, the term ‘work’ is used instead.
These notions also apply to circuits, although they carry different names. The
(parallel) time of a circuit is taken to be the maximum distance from an input
to an output node, and is called the ‘depth’ of the circuit. used for this purpose,
and called ‘depth’. The amount of work done by a circuit equals its gate count.

Space is measured as the maximum size of the storage space used. In some
machine models the precise formalization of this requires some care to ensure
‘compatibility’ with other models (not surprising considering the many different
forms that storage space comes in). In the case of circuits space can be taken
as the (rectangular) area needed by an embedding of the circuit in the plane
(with limited cross-over).

In order to proceed from resources like time and space to the corresponding
complexity measures, we express their use in terms of the size of the input. Size
is defined to be a natural number that is roughly proportional to the length
of the input in some standard notation. When inputs are words in some input
language, then their size is simply defined as their length. If an input is a graph
for instance, then the number of nodes plus the number of edges is a reasonable
definition of size. Usually, the bigger the input, the more resources are needed.
A complexity measure tells you how quickly the use of resources grows with
input size: it is a function that gives for each size the maximum amount of
resource used, over all inputs of that size. Apart from this worst-case measure,
one can also consider an average case complexity, where the average of resource
used is taken over all inputs.

Chapter 4 considers an practically significant resource for circuits, namely
energy consumption. In conventional technologies, whenever the input to a
circuit changes, some subset of the gates and wires will switch and the energy
dissipated hereby in the from of heat is proportional to the sum area of all
switching elements.

In randomized algorithms, choices can be made based on the outcome of
random coin flips. Randomness is used either to ensure a high probability of
giving the correct answer, or to limit the (expected) time to find the correct
answer. In either case, number of coin flips is a useful resource.
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Closely related to randomness, is the resource of queries. A query is a question
that the algorithm can ask, from some set of allowed questions, to always be
given the right answer. Like a random coin flip, this is one external bit of
information, except it can only come out one way.

The last ‘resource’ we’ll discuss is the size of the output. This becomes in-
teresting when for each input, more than one output solution is possible. The
closer in size a solution is to the minimal one, the better. Chapter 2 is ex-
clusively concerned with this output approximation complexity for a specific
problem.

1.3 Trade-offs

Complexity measures can rarely be considered in isolation. This is because one
resource can often be minimized at the cost of several others. Most resources
can be minimized at the cost of making the time exponential in the size of input.
Since exponential time (or for that matter exponential anything) is considered
an extremely bad property for an algorithm to have, this trade-off is hardly
ever even considered. We are interested in trade-offs between resources that all
remain polynomial.

In Chapter 3, a trade-off is established between time and space for a par-
ticular exploration-type problem. It is shown that various different algorithms
have the same space-time-product complexity, up to constant factors. Some-
times algorithms are designed with a single parameter that can be varied to
produce any desired trade-off of resources between two extremes.

In the domain of circuits, the familiar time-space trade-off translates into a
depth-area tradeoff. It is known for instance that a logarithmic depth circuit
on n inputs needs on the order of n log(n) area to be embedded in the plane
(assuming the n inputs lie on a convex boundary). If the depth is relaxed,
then often a linear embedding is possible. For circuits, logarithmic depth is
considered just as desirable as polynomial time is for sequential machines. Thus,
in Chapter 4, the resource of energy is minimized under the requirement of
logarithmic depth.

1.4 Overview

In Chapter 2, we consider the following problem: given a collection of strings
s1, . . . , sm, find the shortest string s such that each si appears as a substring
(a consecutive block) of s. Although this problem is known to be NP-hard, a
simple greedy procedure appears to do quite well and is routinely used in DNA
sequencing and data compression practice, namely: repeatedly merge the pair
of (distinct) strings with maximum overlap until only one string remains. Let
n denote the length of an optimal (shortest) superstring. A common conjecture
states that the above greedy procedure produces a superstring of length O(n)
(in fact, 2n), yet the only previous nontrivial bound known for any polynomial-
time algorithm is a recent O(n log n) result.

We show that the greedy algorithm does in fact achieve a constant factor ap-
proximation, proving an upper bound of 4n. Furthermore, we present a simple
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modified version of the greedy algorithm that we show produces a superstring of
length at most 3n. We also show the superstring problem to be MAX SNP-hard,
which implies that a polynomial-time approximation scheme for this problem
is unlikely.

In Chapter 3, we examine the space complexity of flood-filling. Fill algorithms
are commonly used for changing the color of a region of pixels. A flood-fill al-
gorithm (FFA) is given a seed pixel from which it starts exploring the region
delimited by a boundary of arbitrary shape. Most known FFAs can be notori-
ously memory hungry, using in the worst case even more space than is devoted
to storing the screen image. While such regions never show up in practice, it may
be of interest to find an FFA with minimal worst-case memory requirements.
We present an FFA that uses only a constant amount of space, in addition to
that in which the image is stored. The price it pays for this memory friend-
liness is a possible lack of speed—in the worst case time is quadratic in the
number of pixels. It thus achieves the same space-time product of O(n2) as do
the common FFAs with linear space and linear time, illustrating a well-known
time-space tradeoff.

Chapter 4 turns to the study of a hardwired algorithm; a novel construction
is described that yields fast, minimum energy VLSI circuits that compute k-
threshold and count-to-k functions. The results are obtained in the Uniswitch
Model of switching energy.

In Chapter 5, we move from the study of algorithms to the study of com-
putational models. We present a parallel version of the storage modification
machine. This model, called the Associative Storage Modification Machine
(ASMM), has the property that it can recognize in polynomial time exactly
what Turing machines can recognize in polynomial space. The model there-
fore belongs to the Second Machine Class, consisting of those parallel machine
models that satisfy the parallel computation thesis. The Associative Storage
Modification Machine obtains its computational power from following pointers
in the reverse direction.

Chapters 6,7 and 8 consider the space and time complexity of constructing
certain types of shared memory out of simpler building blocks. The protocols
involved are designed to be wait-free: any operation on the constructed mem-
ory can be completed with only a bounded number of accesses to the simpler
memory objects, irrespective of the relative execution speeds. Such implemen-
tations, where processors need not wait for each other to get access to memory,
help to exploit the amount of parallelism inherent in distributed systems.

We present solutions to the problem of simulating an atomic single-reader,
single-writer variable with non-atomic bits. The first construction, for the case
of a 2-valued atomic variable (bit), achieves the minimal number of non-atomic
bits needed. The main construction of a multi-bit variable avoids repeated
writing (resp. reading) of the value in a single write (resp. read) action on the
simulated atomic variable. It improves on existing solutions of that type in
simplicity and in the number of non-atomic bits used, both in presence and in
accesses per read/write action. We show how to verify these constructions by
machine, based on atomicity-testing automata.

Chapter 7 presents a construction of an multi-user atomic variable directly
from single-writer, single-reader atomic variables. It uses a linear number of
control bits, and a linear number of accesses per Read/Write running in con-
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stant parallel time.
In Chapter 8 we consider the atomic snapshot object in its simplest form

where each cell contains a single bit. We demonstrate the ‘universality’ of this
binary snapshot object by presenting an efficient linear-time implementation of
the general multi-bit atomic snapshot object using an atomic binary snapshot
object as a primitive. Thus, the search for an efficient (sub-quadratic or linear
time) wait-free atomic snapshot implementation may be restricted to the binary
case.

In the final Chapter, number 9, we introduce the notion of Update-Last
Scheme as a distributed method of storing an index, and derive exact bounds
on their space complexity.



2
Linear Approximation of Shortest
Superstrings

2.1 Introduction

Given a finite set of strings, we would like to find their shortest common super-
string. That is, we want the shortest possible string s such that every string in
the set is a substring of s.

The question is NP-hard [5, 6]. Due to its important applications in data
compression [14] and DNA sequencing [8, 9, 13], efficient approximation algo-
rithms for this problem are indispensable. We give an example from the DNA
sequencing practice. A DNA molecule can be represented as a character string
over the set of nucleotides {A, C, G, T}. Such a character string ranges from a
few thousand symbols long for a simple virus to approximately 3×109 symbols
for a human being. Determining this representation for different molecules, or
sequencing the molecules, is a crucial step towards understanding the biological
functions of the molecules. With current laboratory methods, only small frag-
ments (chosen from unknown locations) of at most 500 bases can be sequenced
at a time. Then from hundreds, thousands, sometimes millions of these frag-
ments, a biochemist assembles the superstring representing the whole molecule.
A simple greedy algorithm is routinely used [8, 13] to cope with this job. This
algorithm, which we call GREEDY, repeatedly merges the pair of (distinct)
strings with maximum overlap until only one string remains. It has been an
open question as to how well GREEDY approximates a shortest common su-
perstring, although a common conjecture states that GREEDY produces a
superstring of length at most two times optimal [14, 15, 16].

From a different point of view, Li [9] considered learning a superstring from
randomly drawn substrings in the Valiant learning model [17]. In a restricted
sense, the shorter the superstring we obtain, the smaller the number of sam-
ples are needed to infer a superstring. Therefore finding a good approximation
bound for shortest common superstring implies efficient learnability or infer-
ability of DNA sequences [9]. Our linear approximation result improves Li’s
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O(n log n) approximation by a multiplicative logarithmic factor.
Tarhio and Ukkonen [15] and Turner [16] established some performance guar-

antees for GREEDY with respect to the “compression” measure. This basically
measures the number of symbols saved by GREEDY compared to plainly con-
catenating all the strings. It was shown that if the optimal solution saves l
symbols, then GREEDY saves at least l/2 symbols. But, in general this implies
no performance guarantee with respect to optimal length since in the best case
this only says that GREEDY produces a superstring of length at most half the
total length of all the strings.

In this chapter we show that the superstring problem can be approximated
within a constant factor, and in fact that algorithm GREEDY produces a
superstring of length at most 4n. Furthermore, we give a simple modified greedy
procedure MGREEDY that also achieves a bound of 4n, and then present
another algorithm TGREEDY, based on MGREEDY, that we show achieves
3n.

The rest of the chapter is organized as follows: Section 2.2 contains notation,
definitions, and some basic facts about strings. In Section 2.3 we describe our
main algorithm MGREEDY with its proof. This proof forms the basis of the
analysis in the next two sections. MGREEDY is improved to TGREEDY in
Section 2.4. We finally give the 4n bound for GREEDY in Section 2.5. In
Section 2.7, we show that the superstring problem is MAX SNP-hard which
implies that there is unlikely to exist a polynomial time approximation scheme
for the superstring problem.

2.2 Preliminaries

Let S = {s1, . . . , sm} be a set of strings over some alphabet Σ. Without loss of
generality, we assume that the set S is “substring-free” in that no string si ∈ S
is a substring of any other sj ∈ S. A common superstring of S is a string s such
that each si in S is a substring of s. That is, for each si, the string s can be
written as uisivi for some ui and vi. We will use n and OPT(S) interchangeably
for the length of the shortest common superstring for S. Our goal is to find a
superstring for S whose length is as close to OPT(S) as possible.

Example. Assume we want to find the shortest common superstring of all
words in the following sentence: “Alf ate half lethal alpha alfalfa”. The word
“alf” is a substring of both “half” and “alfalfa”, so we can immediately elim-
inate it. Our set of words is now S0 = { ate, half, lethal, alpha, alfalfa }. A
trivial superstring is “atehalflethalalphaalfalfa” of length 25, which is simply the
concatenation of all substrings. A shortest common superstring is “lethalphal-
falfate”, of length 17, saving 8 characters over the previous one (a compression
of 8). Looking at what GREEDY would make of this example, we see that it
would start out with the largest overlaps from “lethal” to “half” to “alfalfa”
producing “lethalfalfa”. It then has 3 choices of single character overlap, two
of which lead to another shortest superstring “lethalfalfalphate”, and one of
which is lethal in the sense of giving a superstring that is one character longer.
In fact, it is easy to give an example where GREEDY outputs a string almost
twice as long as the optimal one, for instance on input {c(ab)k, (ba)k, (ab)kc}.

For two strings s and t, not necessarily distinct, let v be the longest string
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such that s = uv and t = vw for some non-empty strings u and w. We call |v|
the (amount of) overlap between s and t, and denote it as ov(s, t). Furthermore,
u is called the prefix of s with respect to t, and is denoted pref (s, t). Finally, we
call |pref (s, t)| = |u| the distance from s to t, and denote it as d(s, t). So, the
string uvw = pref (s, t)t, of length d(s, t)+ |t| = |s|+ |t|−ov(s, t) is the shortest
superstring of s and t in which s appears (strictly) before t, and is also called
the merge of s and t. For si, sj ∈ S, we will abbreviate pref (si, sj) to simply
pref (i, j), and d(si, sj) and ov (si, sj) to d(i, j) and ov(i, j) respectively. The
overlap between a string and itself is called a self-overlap. As an example of
self-overlap, we have for the string s = undergrounder an overlap of ov(s, s) = 5
Also, pref (s, s) = undergro and d(s, s) = 8. The string s = alfalfa, for which
ov (s, s) = 4, shows that the overlap is not limited to half the total string length.

Given a list of strings si1 , si2 , . . . , sir
, we define the superstring s = 〈si1 , . . . , sir

〉
to be the string pref (i1, i2)pref (i2, i3) · · · pref (ir−1, ir)sir

. That is, s is the
shortest string such that si1 , si2 , . . . , sir

appear in order in that string. For
a superstring of a substring-free set, this order is well-defined, since substrings
cannot ‘start’ or ‘end’ at the same position, and if substring sj starts before
sk, then sj must also end before sk. Define first(s) = si1 and last(s) = sir

. In
each iteration of GREEDY the following invariant holds:

Claim 2.1 For two distinct strings s and t in GREEDY’s set of strings, neither
first(s) nor last(s) is a substring of t.

Proof. Initially, first(s) = last(s) = s for all strings, so the claim follows from
the fact that S is substring-free. Suppose that the invariant is invalidated by
a merge of two strings t1 and t2 into a string t = 〈t1, t2〉 that has, say, first(s)
as a substring. Let t = u first(s) v. Since first(s) is not a substring of either
t1 or t2, it must properly ‘contain’ the piece of overlap between t1 and t2,
i.e., |first(s)| > ov (t1, t2) and |u| < d(t1, t2). Hence, ov (t1, s) > ov (t1, t2); a
contradiction. 2

So when GREEDY (or its variation MGREEDY that we introduce later)
chooses s and t as having the maximum overlap, then this overlap ov(s, t)
in fact equals ov(last(s),first(t)), and as a result, the merge of s and t is
〈first(s), . . . , last(s),first(t), . . . , last(t)〉. We can therefore say that GREEDY
orders the substrings, by finding the shortest superstring in which the sub-
strings appear in that order.

We can rephrase the above in terms of permutations. For a permutation π
on the set {1, . . . , m}, let Sπ = 〈sπ(1), . . . , sπ(m)〉. In a shortest superstring for
S, the substrings appear in some total order, say sπ(1), . . . , sπ(m), hence it must
equal Sπ.

We will consider a traveling salesman problem on a weighted directed com-
plete graph GS derived from S and show that one can achieve a factor of 4
approximation for TSP on that graph, yielding a factor of 4 approximation for
the shortest-common-superstring problem. Graph GS = (V, E, d) has m ver-
tices V = {1, . . . , m}, and m2 edges E = {(i, j) : 1 ≤ i, j ≤ m}. Here we take
as weight function the distance d(, ): edge (i, j) has weight d(i, j) = d(si, sj),
to obtain the distance graph. This graph is similar to one considered by Turner
in the end of his paper [16]. Later we will take the overlap ov (, ) as the weight
function to obtain the overlap graph. We will call si the string associated with
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vertex i, and let pref (i, j) = pref (si, sj) be the string associated with edge
(i, j).

As examples we draw in Figure 2.1 the overlap graph and the distance graph
for our previous example S0 = { ate, half, lethal, alpha, alfalfa }. All edges not
shown have overlap 0. Note that the sum of the distance and overlap weights
on an edge (i, j) is the length of the string si.

Notice now that TSP(GS) ≤ OPT(S) − ov(last(s),first(s)) ≤ OPT(S),
where TSP(GS) is the cost of the minimum weight Hamiltonian cycle on GS .
The reason is that turning any superstring into a Hamiltonian cycle by over-
lapping its last and first substring saves on cost by charging last(s) for only
d(last(s),first(s)) instead of its full length.

We now define some notation for dealing with directed cycles in GS . Call two
strings s, t equivalent, s ≡ t, if they are cyclic shifts of each other, i.e., if there
are strings u, v such that s = uv and t = vu. If c is a directed cycle in GS with
vertices i0, . . . , ir−1 in order around c, we define strings(c) to be the equiva-
lence class [pref (i0, i1)pref (i1, i2) · · · pref (ir−1, i0)] and strings(c, ik) the rota-
tion starting with pref (ik, ik+1), i.e., the string pref (ik, ik+1) · · · pref (ik−1, ik),
where subscript arithmetic is modulo r. Let us say that an equivalence class
[s] has periodicity k (k > 0), if s is invariant under a rotation by k characters
(s = uv = vu, |u| = k). Obviously, [s] has periodicity |s|. A moment’s reflection
shows that the minimum periodicity of [s] must equal the number of distinct
rotations of s. This is the size of the equivalence class and denoted by card([s]).
Furthermore, it is easily proven that if [s] has periodicities a and b, then it has
periodicity gcd(a, b) as well. (See, e.g., [4].) It follows that all periodicities are
a multiple of the minimum one. In particular, we have that |s| is a multiple of
card([s]).

In general, we will denote a cycle c with vertices i1, . . . , ir in the order by
“i1 → · · · → ir → i1.” Also, let w(c), the weight of cycle c, equal |s|, s ∈
strings(c). For convenience, we will say that sj is in c, or “sj ∈ c” if j is a
vertex of the cycle c.

Now, a few preliminary facts about cycles in GS . Let c = i0 → · · · → ir−1 →
i0 and c′ be cycles in GS . For any string s, sk denotes the string consisting of
k copies of s concatenated together.

Claim 2.2 Each string sij
in c is a substring of sk for all s ∈ strings(c) and

sufficiently large k.

Proof. By induction, sij
is a prefix of pref (ij , ij+1) · · · pref (ij+l−1, ij+l) sij+l

for any l ≥ 0 (addition modulo r). Taking k = d|sij
|/w(c)e and l = kr we

get that sij
is a prefix of pref (ij , ij+1) · · · pref (ij+kr−1, ij+kr) = strings(c, ij)

k ,
which itself is a substring of sk+1 for any s ∈ strings(c). 2

Claim 2.3 If each of {sj1 , . . . , sjr
} is a substring of sk for some string s ∈

strings(c) and sufficiently large k, then there exists a cycle of weight |s| = w(c)
containing all these strings.

Proof. In a (infinite) repetition of s, every string si appears as a substring
at every other |s| characters. This naturally defines a circular ordering of the
strings {sj1 , . . . , sjr

} and the strings in c whose successive distances sum to |s|.
2

Claim 2.4 The superstring 〈si0 , · · · , sir−1
〉 is a substring of strings(c, i0)si0 .
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FIGURE 2.2. Strings and overlaps

Proof. String 〈si0 , . . . , sir−1
〉 is clearly a substring of 〈si0 , . . . , sir−1

, si0〉, which
by definition equals pref (i0, i1) · · · pref (ir−1, i0)si0 = strings(c, i0)si0 . 2

Claim 2.5 If strings(c′) = strings(c), then there exists a third cycle c̃ with
weight w(c) containing all vertices in c and all those in c′.
Proof. Follows from claims 2.2 and 2.3. 2

Claim 2.6 There exists a cycle c̃ of weight card(strings(c)) containing all ver-
tices in c.
Proof. Let u be the prefix of length card(strings(c)) of some string s ∈
strings(c). By our periodicity arguments, |u| divides |s| = w(c), and s = uj

where j = w(c)/|u|. It follows that every string in strings(c) = [s] is a sub-
string of uj+1. Now use Claim 2.3 for u. 2

The following lemma has been proved in [15, 16]. Figure 2.2 gives a graphical
interpretation of it. In the figure, the vertical bars surround pieces of string
that match, showing a possible overlap between v− and u+, giving an upper
bound on d(v−, u+).

Lemma 2.7 Let u, u+, v−, v be strings, not necessarily different, such that ov (u, v) ≥
max{ov(u, u+), ov (v−, v)}. Then, ov (u, v)+ov(v−, u+) ≥ ov (u, u+)+ov (v−, v),
and d(u, v) + d(v−, u+) ≤ d(u, u+) + d(v−, v).

That is, given the choice of merging u to u+ and v− to v or instead merg-
ing u to v and v− to u+, the best choice is that which contains the pair of
largest overlap. The conditions in the above Lemma are also known as “Monge
conditions” in the context of transportation problems [1, 3, 7]. In this sense
the Lemma follows from the observation that optimal shipping routes do not
intersect. In the string context, we are transporting ‘items’ from the ends of
substrings to the fronts of substrings.

2.3 A 4 ·OPT(S) bound for a modified greedy
algorithm

Let S be a set of strings and GS the associated graph. Now, although finding a
minimum weight Hamiltonian cycle in a weighted directed graph is in general a
hard problem, there is a polynomial-time algorithm for a similar problem known
as the assignment problem [10]. Here, the goal is simply to find a decomposition
of the graph into cycles such that each vertex is in exactly one cycle and the
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total weight of the cycles is minimized. Let CYC(GS) be the weight of the
minimum assignment on graph GS , so CYC(GS) ≤ TSP(GS) ≤ OPT(S).

The proof that a modified greedy algorithm MGREEDY finds a superstring
of length at most 4 · OPT(S) proceeds in two stages. We first show that an
algorithm that finds an optimal assignment on GS , then opens each cycle into
a single string, and finally concatenates all such strings together has a perfor-
mance ratio of at most 4. We then show (Theorem 2.10) that in fact, for these
particular graphs, a greedy strategy can be used to find optimal assignments.
This result can also be found (in a somewhat different form) as Theorem 1 in
Hoffman’s 1963 paper [7].

Consider the following algorithm for finding a superstring of the strings in
S.

Algorithm Concat-Cycles

1. On input S, create graph GS and find a minimum weight assignment C
on GS . Let C be the collection of cycles {c1, . . . , cp}.

2. For each cycle ci = i1 → · · · → ir → i1, let s̃i = 〈si1 , . . . , sir
〉 be the

string obtained by opening ci, where i1 is arbitrarily chosen. The string
s̃i has length at most w(ci) + |si1 | by Claim 2.4.

3. Concatenate together the strings s̃i and produce the resulting string s̃ as
output.

Theorem 2.8 Algorithm Concat-Cycles produces a string of length at most
4 ·OPT(S).

Before proving Theorem 2.8, we first need a preliminary lemma giving an
upper bound on the amount of overlap possible between strings in different
cycles of C. The lemma is also implied by the results in [4].

Lemma 2.9 Let c and c′ be two cycles in a minimum weight assignment C with
s ∈ c and s′ ∈ c′. Then, the overlap between s and s′ is less than w(c) + w(c′).

Proof. Let x = strings(c) and x′ = strings(c′). Since C is a minimum weight
assignment, we know x 6= x′. Otherwise, by Claim 2.5, we could find a lighter
assignment by combining the cycles c and c′. In addition, by Claim 2.6, w(c) ≤
card(x).

Suppose that s and s′ overlap in a string u with |u| ≥ w(c) + w(c′). Denote
the substring of u starting at the i-th symbol and ending at the j-th as ui,j .
Since by Claim 2.2, s is a substring of tk for some t ∈ x and large enough k

and s′ is a substring of t′
k′

for some t′ ∈ x′ and large enough k′, we have that
x = [u1,w(c)] and x′ = [u1,w(c′)]. From x 6= x′ we conclude that w(c) 6= w(c′);
assume without loss of generality that w(c) > w(c′). Then

u1,w(c) = u1+w(c′),w(c)+w(c′) =

u1+w(c′),w(c)uw(c)+1,w(c)+w(c′) = u1+w(c′),w(c)u1,w(c′).

This shows that x has periodicity w(c′) < w(c) ≤ card(x), which contradicts
the fact that card(x) is the minimum periodicity. 2
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Proof. (of Theorem 2.8.) Since C = {c1, . . . , cp} is an optimal assignment,
CYC(GS) =

∑p

i=1 w(ci) ≤ OPT(S). A second lower bound on OPT(S) can
be determined as follows: For each cycle ci, let wi = w(ci) and li denote the
length of the longest string in ci. By Lemma 2.9, if we consider the longest
string in each cycle and merge them together optimally, the total amount of
overlap will be at most 2

∑p

i=1 wi. So the resulting string will have length at
least

∑p

i=1 li − 2wi. Thus OPT(S) ≥ max(
∑p

i=1 wi,
∑p

i=1 li − 2wi).
The output string s̃ of algorithm Concat-Cycles has length at most

∑p

i=1 li +
wi (Claim 2.4). So,

|s̃| ≤
p

∑

i=1

li + wi

=

p
∑

i=1

li − 2wi +

p
∑

i=1

3wi

≤ OPT(S) + 3 ·OPT(S)

= 4 ·OPT(S).

2

We are now ready to present the algorithm MGREEDY, and show that it in
fact mimics algorithm Concat-Cycles.

Algorithm MGREEDY

1. Let S be the input set of strings and T be empty.

2. While S is non-empty, do the following: Choose s, t ∈ S (not necessarily
distinct) such that ov (s, t) is maximized, breaking ties arbitrarily. If s 6= t,
then remove s and t from S and replace them with the merged string 〈s, t〉.
If s = t, then just remove s from S and add it to T .

3. When S is empty, output the concatenation of the strings in T .

We can look at MGREEDY as choosing edges in the overlap graph (V =
S, E = V × V, ov(, )). When MGREEDY chooses strings s and t as having
the maximum overlap (where t may equal s), it chooses the directed edge
from last(s) to first(t) (see Claim 2.1). Thus, MGREEDY constructs/joins
paths, and closes them into cycles, to end up with a collection of disjoint cycles
M ⊂ E that cover the vertices of GS . We will call M the assignment created by
MGREEDY. Now think of MGREEDY as taking a list of all the edges sorted
in the decreasing order of their overlaps (resolving ties in some definite way),
and going down the list deciding for each edge whether to include it or not.
Let us say that an edge e dominates another edge f if e precedes f in this list
and shares its head (or tail) with the head (or tail, respectively) of f . By the
definition of MGREEDY, it includes an edge f if and only if it has not yet
included an edge dominating f .

Theorem 2.10 The assignment created by algorithm MGREEDY is an opti-
mal assignment.

Proof. Note that the overlap weight of an assignment and its distance weight
add up to the total length of all strings. Accordingly, an assignment is optimal
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(i.e., has minimum total weight in the distance graph) if and only if it has
maximum total overlap. Among the maximum overlap assignments, let N be
one that has the maximum number of edges in common with M . We shall show
that M = N .

Suppose this is not the case, and let e be the edge of maximum overlap in
the symmetric difference of M and N , with ties broken the same way as by
MGREEDY. Suppose first that this edge is in N \M . Since MGREEDY did
not include e, it must have included another adjacent edge f that dominates
e. Edge f cannot be in N (since N is an assignment), therefore f is in M \N ,
contradicting our choice of the edge e. Suppose that e = k → j is in M \ N .
The two N edges i → j and k → l that share head and tail with e are not in
M , and thus are dominated by e. Since ov (k, j) ≥ max{ov(i, j), ov(k, l)}, by
Lemma 2.7, ov(i, j) + ov (k, l) ≤ ov(k, j) + ov (i, l). Thus replacing in N these
two edges with e = k → j and i → l would yield an assignment N ′ that has
more edges in common with M and has no less overlap than N . This would
contradict our choice of N . 2

Since algorithm MGREEDY finds an optimal assignment, the string it pro-
duces is no longer than the string produced by algorithm Concat-Cycles. (In
fact, it could be shorter since it breaks each cycle in the optimum position.)

2.4 Improving to 3 ·OPT(S)

Recall that in the last step of algorithm MGREEDY, we simply concatenate
all the strings in set T without any compression. Intuitively, if we instead try
to overlap the strings in T , we might be able to achieve a bound better than
4 · OPT(S). Let TGREEDY denote the algorithm that operates in the same
way as MGREEDY except that in the last step, it merges the strings in T by
running GREEDY on them. We can show that TGREEDY indeed achieves a
better bound: it produces a superstring of length at most 3 ·OPT(S).

Theorem 2.11 Algorithm TGREEDY produces a superstring of length at most
3 ·OPT(S).

Proof. Let S = {s1, . . . , sm} be a set of strings and s be the superstring
obtained by TGREEDY on S. Let n = OPT(S) be the length of a shortest
superstring of S. We show that |s| ≤ 3n.

Let T be the set of all “self-overlapping” strings obtained by MGREEDY on S
and C be the assignment created by MGREEDY. For each x ∈ T , let cx denote
the cycle in C corresponding to string x, and let wx = w(cx) be its weight. For
any set R of strings, define ||R|| = ∑

x∈R |x| to be the total length of the strings
in set R. Also let w =

∑

x∈T wx. Since CYC(GS) ≤ TSP(GS) ≤ OPT(S), we
have w ≤ n.

By Lemma 2.9, the compression achieved in a shortest superstring of T is
less than 2w, i.e., ||T || − nT ≤ 2w. By the results in [15, 16], we know that the
compression achieved by GREEDY on set T is at least half the compression
achieved in any superstring of T . That is,

||T || − |s| ≥ (||T || − nT )/2 = ||T || − nT − (||T || − nT )/2 ≥ ||T || − nT − w.

So, |s| ≤ nT + w.
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For each x ∈ T , let six
be the string in cycle cx that is a prefix of x. Let

S′ = {six
|x ∈ T}, n′ = OPT(S′), S′′ = {strings(cx, ix)six

|x ∈ T}, and n′′ =
OPT(S′′).

By Claim 2.4, a superstring for S ′′ is also a superstring for T , so nT ≤ n′′,
where nT = OPT(T ). For any permutation π on T , we have |S ′′

π | ≤ |S′
π| +

∑

x∈T wx, so n′′ ≤ n′ + w, where S′
π and S′′

π are the superstrings obtained by
overlapping the members of S ′ and S′′, respectively, in the order given by π.
Observe that S′ ⊆ S implies n′ ≤ n. Summing up, we get

nT ≤ n′′ ≤ n′ + w ≤ n + w.

Combined with |s| ≤ nT + w, this gives |s| ≤ n + 2w ≤ 3n. 2

2.5 GREEDY achieves linear approximation

One would expect that an analysis similar to that of MGREEDY would also
work for the original GREEDY. This turns out not to be the case. The analysis
of GREEDY is severely complicated by the fact that it continues processing the
“self-overlapping” strings. MGREEDY was especially designed to avoid these
complications, by separating such strings. Let GREEDY (S) denote the length
of the superstring produced by GREEDY on a set S. It is tempting to claim
that

GREEDY (S ∪ {s}) ≤ GREEDY (S) + |s|.
If this were true, a simple argument would extend the 4 · OPT(S) result for
MGREEDY to GREEDY. But the following counterexample disproves this
seemingly innocent claim. Let

S = {cam, am+1cm, cmbm+1, bmc}, s = bm+1am+1.

Now GREEDY (S) = |cam+1cmbm+1c| = 3m + 4, whereas GREEDY (S ∪
{s}) = |bmcmbm+1am+1cmam| = 6m + 2 > (3m + 4) + (2m + 2).

With a more complicated analysis we will nevertheless show that

Theorem 2.12 GREEDY produces a string of length at most 4 ·OPT(S).

Before proving the theorem formally, we give a sketch of the basic idea behind
the proof. If we want to relate the merges done by GREEDY to an optimal
assignment, we have to keep track of what happens when GREEDY violates
the maximum overlap principle, i.e. when some self-overlap is better than the
overlap in GREEDY’s merge. One thing to try is to charge GREEDY some
extra cost that reflects that an optimal assignment on the new set of strings
(with GREEDY’s merge) may be somewhat longer than the optimal assignment
on the former set (in which the self-overlapping string would form a cycle). If we
could just bound these extra costs then we would have a bound for GREEDY.
Unfortunately, this approach fails because the self-overlapping string may be
merged by GREEDY into a larger string which itself becomes self-overlapping,
and this nesting could go arbitrarily deep. Our proof concentrates on the inner-
most self-overlapping strings only. These so called culprits form a linear order
in the final superstring. We avoid the complications of higher level self-overlaps
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by splitting the analysis in two parts. In one part, we ignore all the original
substrings that connect first to the right of a culprit. In the other part, we
ignore all the original substrings that connect first to the left of a culprit. In
each case, it becomes possible to bound the extra cost. This method yields a
bound of 7 ·OPT(S). By combining the two analyses in a more clever way, we
can even eliminate the effect of the extra costs and obtain the same 4 ·OPT(S)
bound as we found for MGREEDY. A detailed formal proof follows.

We will need some notions and lemmas. Think of both GREEDY and MGREEDY
as taking a list of all edges sorted by overlap, and going down the list deciding
for each edge whether to include it or not. Call an edge better (worse) if it ap-
pears before (after) another in this list. Better edges have at least the overlap
of worse ones. Recall that an edge dominates another iff it is better and shares
its head or tail with the other one.

At the end, GREEDY has formed a Hamiltonian path

s1 → s2 → · · · → sm

of ‘greedy’ edges. (w.l.o.g., the strings are renumbered to reflect their order
in the superstring produced by GREEDY.) For convenience we will usually
abbreviate si to i. GREEDY does not include an edge f iff

1. f is dominated by an already chosen edge e, or

2. f is not dominated but it would form a cycle.

Let us call the latter “bad back edges”; a bad back edge f = j → i nec-
essarily has i ≤ j. Each bad back edge f = j → i corresponds to a string
〈si, si+1, . . . , sj〉 that, at some point in the execution of GREEDY, has more
(self) overlap than the pair that is merged. When GREEDY considers f , it has
already chosen all (better) edges on the greedy path from i to j, but not yet
the (worse) edges i− 1→ i and j → j + 1. The bad back edge f is said to span
the closed interval If = [i, j]. The above observations provide a proof of the
following lemma.

Lemma 2.13 Let e and f be two bad back edges. The closed intervals Ie and If

are either disjoint, or one contains the other. If Ie ⊃ If then e is worse than
f (thus, ov (e) ≤ ov (f)).

Thus, the intervals of the bad back edges are nested and bad back edges do
not cross each other. Culprits are the minimal (innermost) such intervals. Each
culprit [i, j] corresponds to a culprit string 〈si, si+1, . . . , sj〉. Note that, because
of the minimality of the culprits, if f = j → i is the back edge of a culprit [i, j],
and e is another bad back edge that shares head or tail with f , then Ie ⊃ If ,
and therefore f dominates e.

Call the worst edge between every two successive culprits on the greedy
path a weak link . Note that weak links are also worse than all edges in the
two adjacent culprits as well as their back edges. If we remove all the weak
links, the greedy path is partitioned into a set of paths, called blocks . Every
block consists of a nonempty culprit as the middle segment, and (possibly
empty) left and right extensions . The set of strings (nodes) S is thus partitioned
into three sets Sl, Sm, Sr of left, middle, and right strings. The example in
Figure 2.3 has 7 substrings, of which 2 by itself and the merge of 4, 5, and 6
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5 6421 73

FIGURE 2.3. Culprits and weak links in Greedy merge path.

form the culprits (indicated by thicker lines). Bad back edges are 2→ 2, 6→ 4,
and 6 → 1. The weak link 3 → 4 is the worst edge between culprits [2] and
[4, 5, 6]. The blocks in this example are thus [1, 2, 3] and [4, 5, 6, 7], and we have
Sl = {1}, Sm = {2, 4, 5, 6}, Sr = {3, 7}.

The following lemma shows that a bad back edge must be from a middle or
right node to a middle or left node.

Lemma 2.14 Let f = j → i be a bad back edge. Node i is either a left node or
the first node of a culprit. Node j is either a right node or the last node of a
culprit.

Proof. Let c = [k, l] be the leftmost culprit in If . Now either i = k is the first
node of c, or i < k is in the left extension of c, or i < k is in the right extension
of the culprit c′ to the left of c. In the latter case however, If includes the
weak link, which by definition is worse than all edges between the culprits c′

and c, including the edge i− 1→ i. This contradicts the observation preceding
Lemma 2.13. A similar argument holds for sj . 2

Let Cm be the assignment on the set Sm of middle strings (nodes) that has
one cycle for each culprit, consisting of the greedy edges together with the back
edge of the culprit. If we consider the application of the algorithm MGREEDY
on the subset of strings Sm, it is easy to see that the algorithm will actually
construct the assignment Cm. Theorem 2.10 then implies the following lemma.

Lemma 2.15 Cm is an optimal assignment on the set Sm of middle strings.

Let the graph Gl = (Vl, El) consist of the left/middle part of all blocks in
the greedy path, i.e. Vl = Sl ∪ Sm and El is the set of non-weak greedy edges
between nodes of Vl. Let Ml be a maximum overlap assignment on Vl, as created
by MGREEDY on the ordered sublist of edges in Vl × Vl. Let Vr = Sm ∪ Sr,
and define similarly the graph Gr = (Vr, Er) and the optimal assignment Mr

on the right/middle strings. Let lc be the sum of the lengths of all culprit
strings. Define ll =

∑

i∈Sl
d(si, si+1) as the total length of all left extensions

and lr =
∑

i∈Sr
d(sR

i , sR
i−1) as the total length of all right extensions. (Here

xR denotes the reversal of string x.) The length of the string produced by
GREEDY is ll + lc + lr − ow, where ow is the summed block overlap (i.e. the
sum of the overlaps of the weak links).

Denoting the overlap
∑

e∈E ov (e) of a set of edges E as ov (E), define the
cost of a set of edges E on a set of strings (nodes) V as

cost(E) = ||V || − ov(E).

Note that the distance plus overlap of a string s to another equals |s|. Because
an assignment (e.g. Ml or Mr) has an edge from each node, its cost equals its
distance weight. Since Vl and Vr are subsets of S and Ml and Mr are optimal



2.5. GREEDY achieves linear approximation 20

765432

1 2 4 5 6

FIGURE 2.4. Left/middle and middle/right parts with weak links.

assignments, we have cost(Ml) ≤ n and cost(Mr) ≤ n. For El and Er we have
that cost(El) = ll + lc and cost(Er) = lr + lc.

We have established the following (in)equalities:

ll + lc + lr = (ll + lc) + (lc + lr)− lc

= cost(El) + cost(Er)− lc

= ||Vl|| − ov (El) + ||Vr|| − ov(Er)− lc

= cost(Ml) + ov(Ml)− ov (El) +

cost(Mr) + ov (Mr)− ov(Er)− lc

≤ 2n + ov(Ml)− ov (El) + ov(Mr)− ov(Er)− lc.

We proceed by bounding the overlap differences in the above equation. Our
basic idea is to charge the overlap of each edge of M to an edge of E or a
weak link or the back edge of a culprit in a way such that every edge of E
and every weak link is charged at most once and the back edge of each culprit
is charged at most twice. This is achieved through combining the left/middle
and middle/right parts carefully as shown below. For convenience, we will refer
to the union operation for multisets (i.e., allowing duplicates) as the disjoint
union.

Let V be the disjoint union of Vl and Vr, let E be the disjoint union of El and
Er, and let G = (V, E) be the disjoint union of Gl and Gr. Thus each string in
Sl ∪ Sr occurs once, while each string in Sm occurs twice in G. We modify E
to take advantage of the block overlaps. Add each weak link to E as an edge
from the last node in the corresponding middle/right path of Gr to the first
node of the corresponding left/middle path of Gl. This procedure yields a new
set of edges E′. Its overlap equals ov (E ′) = ov(El) + ov (Er) + ow. A picture
of (V, E′) for our previous example is given in Figure 2.4.

Let M be the disjoint union of Ml and Mr, an assignment on graph G.
Its overlap equals ov (M) = ov (Ml) + ov (Mr). Every edge of M connects two
Vl nodes or two Vr nodes; thus, all edges of M satisfy the hypothesis of the
following lemma.

Lemma 2.16 Let N be any assignment on V . Let e = t → h be an edge of
N \E′ that is not in Vr × Vl. Then e is dominated by either

1. an adjacent E′ edge, or

2. a culprit’s back edge with which it shares the head h and h ∈ Vr, or

3. a culprit’s back edge with which it shares the tail t and t ∈ Vl.

Proof. Suppose first that e corresponds to a bad back edge. By Lemma 2.14,
h corresponds to a left node or to the first node of a culprit. In the latter case,
e is dominated by the back edge of the culprit (see the comment after Lemma
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2.13). Therefore, either h is the first node of a culprit in Vr (and case 2 holds),
or else h ∈ Vl. Similarly, either t is the last node of a culprit in Vl (and case 3
holds) or else t ∈ Vr . Since e is not in Vr × Vl, it follows then that case 2 or
case 3 holds. (Note that if e is in fact the back edge of some culprit, then both
cases 2 and 3 hold.)

Suppose that e does not correspond to a bad back edge. Then e must be
dominated by some greedy edge since it was not chosen by GREEDY. If the
greedy edge dominating e is in E ′ then we have case 1. If it is not in E ′, then
either h is the first node of a culprit in Vr or t is the last node of a culprit in
Vl, and in both cases f is dominated by the back edge of the culprit. Thus, we
have case 2 or 3. 2

While Lemma 2.16 ensures that each edge of M is bounded in overlap, it
may be that some edges of E ′ are double charged. We will modify M without
decreasing its overlap and without invalidating Lemma 2.16 into an assignment
M ′ such that each edge of E ′ is dominated by one of its adjacent M ′ edges.

Lemma 2.17 Let N be any assignment on V such that N \E ′ does not contain
any edges in Vr × Vl. Then there is an assignment N ′ on V satisfying the
following properties.

1. N ′ \E′ has also no edges in Vr × Vl,

2. ov(N ′) ≥ ov (N),

3. each edge in E′ \N ′ is dominated by one of its two adjacent N ′ edges.

Proof. Since N already has the first two properties, it suffices to argue that
if N violates property 3, then we can construct another assignment N ′ that
satisfies properties 1 and 2, and has more edges in common with E ′.

Let e = k → j be an edge in E ′ −N that dominates both adjacent N edges,
f = i → j, and g = k → l. By Lemma 2.7, replacing edges f and g of N with
e and i → l produces an assignment N ′ with at least as large overlap. To see
that the new edge i→ l of N ′ \E′ is not in Vr ×Vl, observe that if i ∈ Vr then
j ∈ Vr because of the edge f = i→ j (N \E ′ does not have edges in Vr × Vl),
which implies that k is in Vr because of the E′ edge e = k → j (E′ does not
have edges in Vl × Vr), which implies that also l ∈ Vr because of the N edge
g = k → l. 2

Proof. (of Theorem 2.12.) By Lemmas 2.16 and 2.17, we can construct from
the assignment M another assignment M ′ with at least as large total overlap,
and such that we can charge the overlap of each edge of M ′ to an edge of E′ or
to the back edge of a culprit. Every edge of E ′ is charged for at most one edge of
M ′, while the back edge of each culprit is charged for at most two edges of M ′:
for the M ′ edge entering the first culprit node in Vr and the edge coming out of
the last culprit node in Vl. Therefore, ov (M) ≤ ov(M ′) ≤ ov (E′) + 2oc, where
oc is the summed overlap of all culprit back edges. Denote by wc the summed
weight of all culprit cycles, i.e., the weight of the (optimal) assignment Cm on
Sm from Lemma 2.15. Then lc = wc + oc. As in the proof of Theorem 2.8,
we have oc − 2wc ≤ n and wc ≤ n. (Note that the overlap of a culprit back
edge is less than the length of the longest string in the culprit cycle.) Putting
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everything together, the string produced by GREEDY has length

ll + lc + lr − ow ≤ 2n + ov (Ml)− ov(El) + ov (Mr)− ov (Er)− lc − ow

≤ 2n + ov (M ′)− ov(E′)− lc

≤ 2n + 2oc − lc

= 2n + oc − wc

≤ 3n + wc

≤ 4n.

2

2.6 Which algorithm is the best?

Having proved various bounds for the algorithms GREEDY, MGREEDY, and
TGREEDY, one may wonder what this implies about their relative perfor-
mance. First of all we note that MGREEDY can never do better than TGREEDY
since the latter applies the GREEDY algorithm to an intermediate set of strings
that the former merely concatenates.

Does the 3n bound for TGREEDY then mean that it is the best of the three?
This proves not always to be the case. In the example {c(ab)k, (ab)k+1a, (ba)kc},
GREEDY produces the shortest superstring c(ab)k+1ac of length n = 2k + 5,
whereas TGREEDY first separates the middle string to end up with something
like c(ab)kac(ab)k+1a of length 4k + 6.

Perhaps then GREEDY is always better than TGREEDY, despite the fact
that we cannot prove as good an upper bound for it. This turns out not to be the
case either, as shown by the following example. On input {cabk, abkabka, bkdabk−1},
TGREEDY separates the middle string, merges the other two, and next com-
bines these to produce the shortest superstring cabkdabkabka of length 3k + 6,
whereas GREEDY merges the first two, leaving nothing better than cabkabkabkdabk−1

of length 4k + 5.
Another greedy type of algorithm that may come to mind is one that ar-

bitrarily picks any of the strings and then repeatedly merges on the right the
string with maximum overlap. This algorithm, call it NAIVE, turns out to be
disastrous on examples like

{abcde, bcde#a, cde#a#b, de#a#b#c, e#a#b#c#d, #a#b#c#d#e}.

Instead of producing the optimal abcde#a#b#c#d#e, NAIVE might produce
#a#b#c#d#e#a#b#c#de#a#b#cde#a#bcde#abcde by picking #a#b#c#d#e
as a starting point. It is clear that in this way superstrings may be produced
whose length grows quadratically in the optimum length n.

2.7 Lower bound

We show here that the superstring problem is MAX SNP-hard. This implies
that if there is a polynomial time approximation scheme for the superstring
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problem, then there is one also for a wide class of optimization problems, in-
cluding several variants of maximum satisfiability, the node cover and indepen-
dent set problems in bounded-degree graphs, max cut, etc. This is considered
rather unlikely.1

Let A, B be two optimization (maximization or minimization) problems. We
say that A L-reduces (for linearly reduces) to B if there are two polynomial
time algorithms f and g and constants α and β > 0 such that:

1. Given an instance a of A, algorithm f produces an instance b of B such
that the cost of the optimum solution of b, opt(b), is at most α · opt(a),
and

2. Given any solution y of b, algorithm g produces in polynomial time a
solution x of a such that |cost(x) − opt(a)| ≤ β|cost(y)− opt(b)|.

Some basic facts about L-reductions are: First, the composition of two L-
reductions is also an L-reduction. Second, if problem A L-reduces to problem
B and B can be approximated in polynomial time with relative error ε (i.e.,
within a factor of 1 + ε or 1− ε depending on whether B is a minimization or
maximization problem) then A can be approximated with relative error αβε. In
particular, if B has a polynomial time approximation scheme, then so does A.
The class MAX SNP is a class of optimization problems defined syntactically
in [11]. It is known that every problem in this class can be approximated within
some constant factor. A problem is MAX SNP-hard if every problem in MAX
SNP can be L-reduced to it.

Theorem 2.18 The superstring problem is MAX SNP-hard.

Proof. The reduction is from a special case of the TSP with triangle inequality.
Let TSP(1,2) be the TSP restricted to instances where all the distances are
either 1 or 2. We can consider an instance to this problem as being specified by
a graph H ; the edges of H are precisely those that have length 1 while the edges
that are not in H have length 2. We need here the version of the TSP where we
seek the shortest Hamiltonian path (instead of cycle), and, more importantly,
we need the additional restriction that the graph H be of bounded degree
(the precise bound is not important). It was shown in [12] that the TSP(1,2)
problem (even for this restricted version) is MAX SNP-hard.

Let H be a graph of bounded degree D specifying an instance of TSP(1,2).
The hardness result holds for both the symmetric and the asymmetric TSP (i.e.,
for both undirected and directed graphs H). We let H be a directed graph here.
Without loss of generality, assume that each vertex of H has outdegree at least
2. The reduction is similar to the one of [5] used to show the NP-completeness
of the superstring decision problem. We have to prove here that it is an L-
reduction. For every vertex v of H we have two letters v and v′. In addition
there is one more letter #. Corresponding to each vertex v we have a string
v#v′, called the connector for v. For each vertex v, enumerate the edges out of
v in an arbitrary cyclic order as (v, w0), . . . , (v, wd−1) (*). Corresponding to the
ith edge (v, wi) out of v we have a string pi(v) = v′wi−1v

′wi, where subscript
arithmetic is modulo d. We will say that these strings are associated with v.

1In fact, Arora et al. [2] have recently shown that MAX SNP-hard problems do
not have polynomial time approximation schemes, unless P = NP.
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Let n be the number of vertices and m the number of edges of H . If all
vertices have degree at most D then m ≤ Dn. Let k be the minimum number
of edges whose addition to H suffices to form a Hamiltonian path. Thus, the
optimal cost of the TSP instance is n− 1 + k. We shall argue that the length
of the shortest common superstring is 2m + 3n + k + 1. It will follow then that
the reduction is linear since m is linear in n.

Consider the distance-weighted graph GS for this set of strings, and let G2 be
its subgraph with only edges of minimal weight (2). Clearly, G2 has exactly one
component for each vertex of H , which consists of a cycle of the associated p
strings, and a connector that has an edge to each of them. We need only consider
‘standard’ superstrings in which all strings associated with some vertex form a
subgraph of G2, so that only the last p string has an outgoing edge of weight
more than 2 (3 or 4). Namely, if some vertex fails this requirement, then at
least two of its associated strings have outgoing edges of weight more than 2,
thus we do not increase the length by putting all its p strings directly after its
connector in a standard way. A standard superstring naturally corresponds to
an ordering of vertices v1, v2, . . . , vn.

For the converse there remains a choice of which string q succeeds a connector
vi#v′i. If H has an edge from vi to vi+1 and the ‘next’ edge out of vi (in (*))
goes to, say vj , then choosing q = v′

ivi+1v
′
ivj results in a weight of 3 on the

edge from the last p string to the next connector vi+1#v′i+1, whereas this weight
would otherwise be 4. If H doesn’t have this edge, then the choice of q doesn’t
matter. Let us call a superstring ‘Standard’ if in addition to being standard, it
also satisfies this latter requirement for all vertices.

Now suppose that the addition of k edges to H gives a Hamiltonian path
v1, v2, . . . , vn−1, vn. Then we can construct a corresponding Standard super-
string. If the out-degree of vi is di, then its length will be

∑n

i=1(2 + 2di + 1) +
k + 1 = 3n + 2m + k + 1.

Conversely, suppose we are given a common superstring of length 3n+2m+
k + 1. This can then be turned into a Standard superstring that is no longer.
If v1, v2, . . . , vn is the corresponding order of vertices, it follows that H cannot
be missing more than k of the edges (vi, vi+1). 2

Since the strings in the above L-reduction have bounded length (4), the
reduction applies also to the maximization version of the superstring problem
[15, 16]. That is, maximizing the total compression is also MAX SNP-hard.

2.8 Open problems

We end the chapter with several open questions raised from this research:
(1) Obtain an algorithm which achieves a performance better than 3 times

the optimum.
(2) Prove or disprove the conjecture that GREEDY achieves 2 times the

optimum.
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3
On Labyrinth Problems and
Flood-Filling.

3.1 Introduction

Consider a property that pixels in a frame buffer may or may not possess,
such as having a particular color, or, more generally, a color from a selected
range. We can identify regions of connected pixels that share this property.
Each region is delimited by a set of pixels lacking the property, constituting
its boundary . We are concerned with 4-connected 1 regions, where each pixel
connects to its 4 horizontally and vertically adjacent neighbours. In contrast,
the boundary of a region consists of a number of 8-connected components, one
external component, and zero or more internal ones. Given a designated region,
a filling algorithm is to apply to each pixel in the region a certain operation,
such as setting the color to a specified value, exactly once.

3.1.1 Properties and Operations

There is one, very important, restriction we put on the possible combination of
property and operation, namely that the operation invalidates the property.
So, the operation “make green” is allowed for the property “red”, but not for
the property “red or green”.

We pose this restriction with the aim of finding a constant space filling al-
gorithm. To see why this is necessary, assume there is a third colour, blue, and
consider some arbitrary green region with a blue boundary. With a property
“red or green” defining the regions, the operation “make green” is of course
ineffective on our green-only region. If there had been red pixels in the region
however, they would need to be found by the filling algorithm and colored
green. This reduces the task of the filling algorithm to one of visiting all the

1Note that we diverge here from the graph-theoretic interpretation of having so
many disjoint paths between any 2 points.
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green pixels and detecting termination. Now, since the question of whether this
can be done using less than a linear amount of space is known to be a hard
open problem, there is little hope of finding an algorithm for unrestricted filling
using only a constant amount of memory.

Furthermore, is it widely believed that no finite “bug” automaton2 (possibly
equipped with a fixed number of markers) can traverse all nodes of an arbi-
trary planar graph embedded in a grid, let alone detect the termination of its
traversal. This means that the restriction we impose on the filling operation is
probably vital for a constant space solution.

It may seem from the above that such problems arise only if the number of
colors exceeds 2, but this is not necessarily the case. Consider a so called pattern-
fill, where the operation depends on the pixel’s coordinates. A simple example
is a monochrome image, where the property is “white”, and the operation is to
make the pixel black iff both its x and y coordinate are even. In other words,
change the color of a white region into what looks like light gray. Using a 2 by
2 square of 4 pixels, 1 black and 3 white, as a building block, it is clear that we
can again construct arbitrarily shaped regions where the required operation is
always ineffective.

As a result of the restriction, pixels which have been operated on will be
indistinguishable from the boundary. In effect, the boundary can be said to
expand into the region.

3.1.2 Terminology

From now, we will abstract from the details of the distinguishing property and
desired operation by assuming the existence of the following two functions:

get() a boolean function evaluating the property for the pixel whose address
it is given, and

set() a procedure that performs the operation on the pixel whose address it is
given.

Let R, at any time, denote the set of pixels that remain to be filled, The
boundary of R, denoted b(R) is just the set of pixels in R̄ that neighbour a
pixel in R. We assume w.l.o.g. that an FFA applies get() only to pixels in
R∪ b(R), i.e. it will not cross the boundary. On those in R it returns true, and
on those in b(R) it returns false.

The existing algorithms discussed here are, from a technical viewpoint, prop-
agation algorithms. They start from a given seed pixel and explore the entire
region containing it; propagating, as it were, from the seed pixel to the region’s
boundary. In the formulation of Fishkin and Barsky [1], ‘filling is the composite
process of finding and SETting the pixels in the region.’ This distinction seems
a natural one for familiar FFAs, which can be written purely in terms of get()
to serve as algorithms that merely traverse a designated region. The correct
propagation of our algorithm however very much depends on the SETting of
pixels. Therefore, we will refrain from the above compositional view and simply
refer to all algorithms discussed here as FFAs.

2Imagine a finite automaton as a bug walking in a graph, at each step seeing which
of the 4 direction are possible.
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We are interested in the space complexity and, to a lesser extent, the time
complexity of FFAs. These are defined to be the maximum space (respectively
time) used for filling a region of area n (that is, consisting of n pixels).

For the moment we assume a RAM-like machine model in which pixel-
addresses fit in a fixed number of machine words. This is a reasonable as-
sumption for all practical purposes where the regions will certainly be smaller
than 232 by 232 pixels.

In the next section, we will present two straightforward examples of well
known FFAs and show their space complexity to be linear in the area of the
filled region.

3.2 Depth First Filling

Consider the following recursive flood fill algorithm:

df_fill(p)

{

if (!get(p)) /* not in region */

return;

set(p);

df_fill(p-DX);

df_fill(p+DX);

df_fill(p-DY);

df_fill(p+DY);

}

For conciseness, we have flattened the 2 dimensions of the pixel plane into
one linear address space; using two different offsets, DX and DY, to move to
horizontally, resp. vertically adjacent neighbours. This closely resembles the
way in which pixels are commonly stored in computer memory. Furthermore,
let us call the negative x-direction “left”, the positive x-direction “right”, the
negative y-direction “up”, and the positive y-direction “down”.

Most of the fill algorithms in use today are more or less sophisticated varia-
tions on this simple procedure. See Fishkin and Barsky [1] for a comprehensive
survey of such algorithms. They use as a measure of speed the average number
of times a pixel in the region is visited. Clearly, for the above simple FFA, every
pixel properly inside the filled region is visited once from each side (4 times)
and those neighbouring the boundary 1, 2, or 3 times. The pixels on the bound-
ary itself are also visited of course, but for simplicities’ sake, are excluded from
the above average. Let us mention that the new FFA proposed in [1] achieves
an average of only 1.05 visits per pixel.

Now let’s look at the memory usage. While there are no explicit data struc-
tures, it takes a lot of stack space to remember all the recursive invocations.
Assume that the seed pixel is in the bottom-right corner of a rectangular re-
gion. The filling then propagates first to the left boundary, then one pixel up,
then back to the right boundary, and so on. Since back-tracking occurs only
on the original rectangle boundary, the depth of the recursion can be seen to
equal the area of the region, hence the memory usage is proportional to that.
Permuting the order of recursive calls doesn’t help; for any order there will
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be two opposite directions that both come before a third, like left and right
come before up in the ordering above, and an appropriate starting point in a
rectangle will thus show the same behaviour for the permuted order fill.

In conclusion: recursive or stack-based FFAs have linear space complexity.

3.3 Breadth First Filling

In the following algorithm the stack implicit in the previous algorithm is re-
placed by a first-in, first-out queue.

bf_fill(p)

{

enque(p);

while (not_empty()) {

p = deque();

if (get(p)) {

set(p);

enque(p-DX);

enque(p+DX);

enque(p-DY);

enque(p+DY);

}

}

}

This algorithm is a big improvement over the previous one in terms of
memory-usage, at least in practice. It will fill the rectangle or for that mat-
ter any convex region using O(

√
n) space. This is because the fill tends to

expand in a diamond-shaped form, where only pixels in or neighbouring the
outermost pixel-layer of the diamond are in the queue.

It is tempting to conjecture that the space complexity of the breadth first fill
is in fact O(

√
n). In trying to prove this, one runs into difficulties with regions

where the diamond is not just expanding away from the seed pixel but also has
to move back towards it.

The picture in Figure 3.1 was constructed to exhibit this behaviour in the
extreme. Consider changing the white region inside the big diamond to black.
Starting from the center, the fill will spread out evenly in all four directions,
then split again fourfold, and after one more split will arrive, almost simulta-
neously, at the 64 ‘outlets’.

From there 64 small diamonds will develop in parallel, the total circumference
of which is on the order of the area of the region. This shows breadth-first (queue
based) FFAs, too, suffer from a linear worst case space complexity.

3.4 The price of disconnecting

If we trace the need for using all that memory in stack and queue based FFAs,
we see that the neighbours of a just-filled pixel are remembered to ensure that
the regions those neighbours are part of, ultimately get filled too. Recall that
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FIGURE 3.1. A worst case example region for breadth first fill.

R, at any time, denotes the set of pixels that remain to be filled. Clearly, if R
consists of c components, then at least c different pixels must be remembered,
one in each component, in order to be able to complete filling all of R. Whenever
a pixel is filled that is a cutting point of its component (a cutting point in a
connected graph is a point whose removal leaves more than one component),
additional pixels must be remembered. On the other hand, if we only fill pixels
that leave R connected, then we just move to any of its unfilled neighbours and
continue, without having to remember any pixel other than where we are. This
reduces the problem of filling to that of finding a non-cutting pixel. If we can
find such a pixel in time T (n), then filling all the pixels in R can be done in
time nT (n) with no additional storage.

3.5 On planar embeddings

Let’s consider the problem in a slightly different, more general, setting. A pla-
nar embedding of a (planar) graph can be succinctly represented by a triple
(V, H, r). V is the set of vertices in the graph. H ⊆ V ×V is the set of half-edges.
A half-edge h = (v, w) is that half of the edge {v, w} which is adjacent to v. Of
course, we require that H be symmetric; a half edge (v, w) cannot exist without
a corresponding other half (w, v). Finally, r : H → H is a function that orders
all half-edges around each vertex in a clock-wise manner. If the half-edges ad-
jacent to a vertex v of degree d are, in clock-wise order, h0, h1, . . . , hd−1, then
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r(hi) = h(i+1) mod d. Half-edges adjacent to the same vertex are also said to be
adjacent. Note that the vertices are in one-one correspondence to the orbits of
r. Let us call such a triple (V, H, r) a labyrinth.

We introduce some more terminology that will be useful later. Labyrinth
L′ = (V ′, H ′, r′) is a sublabyrinth of L = (V, H, r) iff V ′ ⊆ V , H ′ ⊆ H∩V ′×V ′,
and ∀h ∈ H ′ : r′(h) = ri(h), i > 0 minimal such that ri(h) ∈ H ′. When L =
(V, H, r) is a labyrinth and V ′ ⊆ V , then L|V ′ is the sublabyrinth (V ′, H ′, r′)
with H ′ = H ∩ V ′ × V ′. Also, with v ∈ V , L \ v denotes L|(V − {v}). An
edge in a labyrinth is a set of two corresponding half-edges {(v, w), (w, v)}. A
path is defined in the natural way. A labyrinth is connected if for any distinct
vertices v, w there is a path from v to w. A connected component, or just
component, of a labyrinth L = (V, H, r), is a maximal connected sublabyrinth
L′ = (V ′, H ′, r′). For a half-edge h = (v, w) in labyrinth L = (V, H, r), C(h)
denotes the connected component of L \ v containing w.

3.5.1 Exploring the labyrinth

An explorer is placed in the labyrinth on an arbitrary half-edge, equipped with
a finite set of distinct markers. At any time, movement is possible in three
directions

right Move from a half-edge h to r(h).

left Move from a half-edge h to r−1(h).

cross Move from a half-edge (v, w) to its counterpart (w, v).

Marker manipulation is achieved through the primitive operations drop marker
(on current half-edge), pick marker (from current or adjacent half-edge), and
the tests carrying marker, and here marker (is marker on current half-edge?).
Note that markers are placed at half-edges, not vertices. We further allow some
more involved operations whose implementation in terms of the above primi-
tives is straightforward. Of these, the near test checks whether any adjacent
half-edge contains a given marker, the replace operation picks up a given
marker at an adjacent half-edge to drop another marker in its place, and the
goto operation moves to an adjacent half-edge containing a given marker. Fi-
nally, a halt operation is available to signal the completion of a task.

The explorer is a finite automaton expressed as a procedure with no variables
other than a fixed set of markers.

3.5.2 Finding a non-cutting point

The problem we’re interested in is that of finding a non-cutting vertex. The
solution is an explorer which, started on an any initial half-edge of an arbitrary
but finite labyrinth, always halts in a finite number of steps on a half-edge
adjacent to a non-cutting vertex. Our proposed initial solution is:
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markers last ,out
loop

if carrying last then
drop-left last ; drop out

elsif near last then
if at-left out then

move-here out
if here last then

halt
endif

else left; pick last ,out
endif

else left
endif
cross

end

The following discussion serves both as an explanation of the workings of the
explorer, and as a proof of its correctness.

What the explorer does is to perform a series of connectivity tests (con-test for
short) T0, T1, . . . at vertices v0, v1, . . .. Connectivity test Ti determines whether
vertex vi is a cutting point or not. At the start of Ti, marker last is dropped
on a half-edge adjacent to vi. If the con-test fails, i.e. vi is a cutting point,
then last is picked up and dropped at a neighbouring vertex vi+1, where the
process is repeated. Let h0 be the half-edge on which explorer is initially placed
and hi+1 = (vi+1, vi) be the half-edge on which the explorer arrives at vi+1 for
con-test Ti+1.

We first consider what happens when last is dropped at a non-cutting point
v = vi. This case is illustrated in Figure 3.2(a). Since removal of v leaves the
labyrinth connected, there are paths connecting all of the neighbours of v in
L \ v, indicated by the dotted lines. These paths form, in this case, 3 faces
F1, F2, F3, one between every 2 adjacent half-edges of v (in case v lies on the
boundary of the labyrinth, then one of these faces is the infinite external face.)
Suppose hi, the half-edge on which explorer arrives at v, is the bottom one.
Explorer will drop marker last at the next left half-edge, and marker out at
h0. Then it will cross, i.e. leave v through the out edge. Since it’s no longer
carrying last , it will just alternate left and cross until it gets back to v. That
is, it will follow a right-hand walk along the boundary of face F1, returning to
v on the half-edge right of out . Next, the tests near last and at-left out will
succeed (the at-left is of course from the viewpoint of v), and out will move
one half-edge to the right. This process will repeat until out moves to halt , at
which point explorer will halt. This shows that non-cutting points are correctly
identified.

Next consider the case where v = vi is a cutting point, illustrated in Fig-
ure 3.2(b). So L\v is not connected and consists of multiple components. Again
suppose that hi is the bottom half-edge. The dotted lines indicate that C(hi)
contains two more neighbours of v. Each other component of L \ v is internal
to one of the faces determined by C(hi). Our explorer starting from hi, will
traverse faces just as in case (a), until a non-empty face is traversed. In (b)
this is when the top face has just been traversed and explorer returns to v.
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FIGURE 3.2. Connectivity tests

Now the test near last will succeed but at-left out will fail. There are other
half-edges between the one where explorer returned to v and the one where it
left v (out), constituting one or more components different from C(hi). The
explorer now picks up last and crosses the half-edge on its left, moving to vi+1

to start another con-test.

3.5.3 Termination

For convenience, let’s write Ci for C(hi). The crucial observation is that Ci is
a proper sublabyrinth of Ci+1. Since the labyrinth is finite, so is the sequence
of nested components:

C1 ⊂ C2 ⊂ · · · ⊂ Cr,

with r ≤ n = |V |, and Tr is successful. This proves termination of the explorer.

3.5.4 Improving Time Complexity

Next let’s consider the time complexity. Induction easily shows that during Ti,
only Ci is visited in addition to vertex vi itself. Furthermore, each half-edge is
visited exactly once for each adjacent face traversed during Ti, hence at most
twice. Together with the fact that the number of edges in a planar graph is
linear in the number of vertices, this gives an upper bound of O(n2).

But we can do better. Consider the following extension to our procedure.
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markers last ,out ,short ,cut
loop

if carrying last then
drop-left last ; drop out

elsif near last then
if at-left out then

move-here out
if here last then

halt
endif

else replace out by short ; left; drop cut ; pick last
endif

elsif here short goto cut
else left
endif
cross

end

When a con-test Ti fails, a marker short is left in place of out and another
marker cut is dropped on the half-edge leading to vi+1. (the replace operation
includes a possible excursion to the neighbour where these two markers were
dropped earlier in order to pick them up.) Refer to Figure 3.2(c). During Ti+1,
the only way for our initial explorer to traverse component Ci again is to arrive
at v on the half-edge right of short , and leave v over short itself. It would then
follow the exact same path that also led to Ti failing. The new explorer short-
circuits this by detecting the presence of short and proceeding immediately to
cut . This only speeds up the con-test and doesn’t invalidate its correctness.
The effect of this shortcut is the same as if all half-edges from short up to cut
were removed, as indicated by the dashed lines. With the shortcut mechanism,
Ti+1 only visits Ci+1 \ Ci, plus vi. Hence, successive con-tests only overlap in
single points, and using the same planarity argument, we obtain an O(n) upper
bound on the time complexity of the improved explorer.

3.6 The constant space FFA

Having solved the subproblem of finding a non-cutting point, we now return to
flood filling. The above explorer is easily translated into an FFA. The current
position as well as each marker is represented by a pair (p, d) of a pixel address
and direction. Carried markers have a special value. At the start of the loop,
all 4 neighbouring pixels are tested with get(). If the number of neighbours
belonging to the region is 0, then the FFA is finished after setting the current
pixel. If the number is 1 then a slight optimization is possible; since the current
pixel has only one neighbour in the region it is a non-cutting point and can be
set, without even disturbing the current con-test (but pick up the last marker
if it happens to be located at the current pixel). Otherwise, the FFA behaves
similar to the labyrinth explorer. It uses constant space, and, since it can find
no more than n non-cutting points, runs in time O(n2).
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3.7 Conclusion

The memory-hunger of existing flood-fill algorithms is not an unavoidable evil.
At the cost of increasing the worst-case running time by a factor n, memory-use
can be reduced to a constant: a reduction by the same factor n. An interesting
open problem is whether Θ(n2) is a lower bound on the space-time complexity
product for FFAs and if so, whether this product can also be achieved by FFAs
with complexities strictly between these two extremes.
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4
The Energy Complexity of Threshold
and other functions.

In this chapter we obtain upper bounds on the switching energy needed to
compute threshold and counting functions with VLSI circuits.

Switching energy is theoretically interesting because it is believed [14] to
be intrinsic to computation and a fundamental complexity measure of VLSI
computations. Energy is practically motivated in VLSI design because energy
consumed by a circuit is transformed into heat. How well a circuit can dissipate
heat determines its operational limitations. Thus, the less heat produced the
better. Further, energy considerations determine a significant portion of the
overall costs of a computer [15].

Common to all physical devices is the switching energy [14] consumed when
a wire or gate changes state from 1 to 0 or vice versa. The amount of switching
energy consumed is proportional to the area switched.

The results in this chapter are obtained in the Uniswitch Model (USM) of
energy consumption, described in the next section. USM was first defined by
Kissin [9] and has become the primary model for the asymptotic analysis of
switching energy ([12], [16], [18], [1]). Kissin [8] also described the first energy
saving design technique, by obtaining energy-efficient circuits for OR, AND ,
Compare and Addition functions. Lengauer and Mehlhorn [13] showed that n-
input functions realizable in AT 2 = O(n2) require Ω(AT ) switching energy,
where A is area and T is time in the Thompson model [17]. Aggarwal et al
[1] improved the result of Lengauer and Mehlhorn to obtain an Ω(n2) energy
bound for the class of transitive functions [19]. Leo [12] showed that, for a
specialized circuit basis, the parity function requires Ω(A) average switching
energy, where A is the area of the parity circuit. Tyagi [18] studied the aver-
age energy consumption of logic level structures such as Programmable Logic
Arrays (PLA).

USM measures the differences between two stable states of a circuit. Race
conditions (aka hazards) are neglected; they are the domain of the Multiswitch
Models, which are defined and discussed in [7] and [6]. USM provides a lower
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bound on the total energy consumed by a circuit.
The rest of this chapter is organized as follows. Section 4.1 describes and

motivates the Uniswitch Model of energy consumption, aka uniswitch energy.
(The term energy refers to switching energy for the duration of this chapter).
The definition of a circuit is extended to include wires with bandwidth greater
than 1. In Section 4.2, upper bounds are obtained in USM. In particular, a
fast VLSI circuit is described for count-to-k functions, which is optimal in
consuming O(n) worst case uniswitch energy. The count-to-k construction also
yields bounds on k-threshold functions. Conclusions follow in Section 4.3.

4.1 The setting

The Uniswitch Model of energy consumption defines an energy cost measure
for VLSI circuits. USM measures the differences between states of a circuit.
The following discussion sets the stage for a precise definition of USM.

A VLSI circuit is a combinational circuit [2] embedded in a plane as in [4].
Salient assumptions of the VLSI circuit model that are important to USM are as
follows. A circuit is an acyclic directed graph of gates (nodes) and wires (edges).
The number of input (fanin 0) nodes is denoted n. The maximum number of
edges on a path from an input node to an output (fanout 0) node is called the
depth of the circuit. A ‘monowire’ in a VLSI circuit has bandwidth 1 and width
λ (λ is the standard name for line width). A wire has some bandwidth b ≤ B
and width 2λb − 1, consisting of b parallel monowires separated at distance
λ. We use B to denote a maximum bandwidth. This nonstandard notion of
wire makes it easier to deal with values in a range 0, 1, 2, . . . , k with k < 2B .
At most a constant number of wires (at least 2) can overlap at any point in
a VLSI circuit. A node has constant area at least λ2, bounded fanin (number
of input wires), and bounded fanout (number of output wires). A non-input
node computes a function of the values on its input wires in constant time (see
discussion below). Gates are separated by distances of at least λ.

The k-threshold circuit described in this chapter uses a circuit basis that
includes addition, subtraction, minimum, and comparison functions of 2 ≤ B-
bit numbers, where k < 2B are constants. These functions can be decomposed
into standard boolean subcircuits that use only a constant amount of resources.
In the analysis that follows, node complexity is therefore neglected.

Write a circuit C as C = (V, W ), where V is the set of nodes and W the set
of wires. A legal state, (hereafter also called state or stable state) of a circuit
C = (V, W ), is a function V ∪W → {0, 1}≤B, that attributes consistent values
to the nodes and wires of C. That is, the value of a node equals that of all
outgoing wires, and the value of a non-input node equals the corresponding
function of the values on the input wires. Numbers are equated with their
binary representations. Obviously, the value of any node or wire in a stable
state is completely determined by the input vector. For a node v (wire w) and
an input vector x, let v(x) (w(x)) denote the value of the node (wire) in the
stable state induced by input x.

The switching energy of a circuit C is defined as a distance metric on the
set of 2n possible inputs vector. We are interested in what happens when one
input vector x to C is replaced by another input vector y. A wire w for which
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w(x) 6= w(y) is said to switch. Let hw,x,y be the Hamming distance between
w(x) and w(y). A wire w of length lw that switches, involves a switching area
of hw,x,yAw, where Aw = lwλ is the area of one of the constituent monowires
of w. Letting p be the area accounting for 1 unit of switching energy, this
accounts for A/p switching energy. Similarly, a node v of area A that switches
(v(x) 6= v(y)), accounts for A/p switching energy (for convenience we assume
that all of the area of the node is involved in the switching).

The total switching energy consumed by C when switching from input x to
input y is

E(C, x, y) = (
∑

w∈W

hw,x,yAw +
∑

v∈V,v(x)6=v(y)

Av)/p.

Obviously, E(C, x, x) = 0, E(C, x, y) = E(C, y, x), and E(C, x, z) ≤ E(C, x, y)+
E(C, y, z), so that E(C) is indeed a distance metric. Also, E(C) is bounded by
AC/p, with AC the total area of C.

The worst case uniswitch energy of a circuit C is defined as

Eworst (C) = max
x,y∈{0,1}n

E(C, x, y),

while the average case uniswitch energy is defined as

Eavg (C) =
∑

x,y∈{0,1}n

E(C, x, y)/22n,

where 22n is the number of possible input pairs (x, y). This definition of Eavg (C)
assumes that the input vector is distributed uniformly over {0, 1}n.

A function f : {0, 1}∗ → {0, 1}∗ is energy efficient iff there exists a family
C = (Cn)(n∈N) of circuits with Cn realizing f |{0, 1}n in O(log n) depth, such
that Eworst (Cn) = O(n).

Throughout this chapter, log n means log2 n.

4.1.1 Model Motivation

The intent of this section is to motivate the Uniswitch Model in light of physical
considerations. USM is a good model for obtaining lower bounds because it
conservatively estimates a circuit’s switching behaviour. Thus, a lower bound
in USM is an equally valid lower bound on multiswitch energy.

USM takes no notice of how a circuit arrives at a particular state. This is the
domain of the Multiswitch Models, which are discussed in [7] and [6]. However,
in order to discuss the relevance of using USM to obtain upper bounds, the
following multiswitch notions are introduced.

The switching behaviour of physical circuits is influenced by various delay
functions, such as gate delay δ, wire delay ∆ and input delay I . δ determines
the switching speed of a gate. ∆ determines the time to transmit bits along a
wire. I determines when an input value arrives at an input port.

Let (Cn, δ, ∆, I) denote a circuit scheme, where Cn is a VLSI circuit with
gate delay δ, wire delay ∆, and input delay I . A circuit scheme (Cn, δ, ∆, I)
exhibits the uniswitch property if each node or wire of Cn switches at most once
when Cn changes from one input setting to another, according to δ, ∆ and I .
Otherwise, (Cn, δ, ∆, I) exhibits the multiswitch property.
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FIGURE 4.1. Preferred Sequential Circuit: a Finite State Machine

Using USM to obtain upper bounds is justified for circuit schemes that ex-
hibit the uniswitch property. For example, if each node of a circuit receives its
inputs at the same time, race conditions cannot arise. The uniswitch property
is thus ensured. Some real circuits have this timing property. Where race con-
ditions derive solely from a circuit’s asynchrony (i.e.. the paths to a node vary
in length), a circuit scheme can acquire the uniswitch property if the circuit
can be made synchronous. A ”bad” input schedule can be offset by varying
gate delays. These approaches to designing circuit schemes that achieve the
uniswitch property are discussed in [7] and [6]. Further, according to C. Mead
[15], many CMOS designs are synchronized to ensure that the corresponding
circuit schemes have the uniswitch property.

USM is the first step in the systematic asymptotic analysis of switching
energy consumption in VLSI circuits. As such, USM is justified as an upper
bound model. In addition, USM is motivated by designers’ practical efforts to
prevent hazards and thus ensure the uniswitch property. USM is used for upper
bound analysis in [18] and [1].

USM is defined for acyclic circuits. The study of combinational circuits (with-
out loops) has a long and distinguished history. Krohn and Rhodes’ [10, 11]
seminal work in this area showed that each sequential machine (with loops)
can be decomposed into structures consisting of only combinational circuits
and flip-flops.

A recommended architecture for sequential machines is the finite state ma-
chine in which the combinational logic is isolated from the looping structure
[14]. See Figure 4.1. This architecture lends itself to analysis of the combina-
tional logic distinct from the looping buffers.

4.2 Worst case upper bounds

4.2.1 Energy-Efficient k-Threshold Circuit

In this section, a novel energy-efficient threshold circuit is described, which gen-
eralizes the techniques of the energy-efficient OR and AND circuits described
in [8] ,[5]. The energy-efficient OR circuit used the observation that it is suffi-
cient to turn on one OR input to turn on the output. Thus, when many inputs
to SOR (Smart OR circuit) are ”1”, all but one of these ”1” signals are ‘killed’.
In a completely analogous manner, it is sufficient to turn off one AND input
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in order to turn off the output. Thus, when many inputs are turned off, only
one 0 signal must propagate all the way to the output. The principle idea is
that the input may provide more information than the function requires, and
suppressing unneeded input bits results in energy savings. This idea was also
used in [8] to design energy-efficient comparator circuits.

A threshold function, Tk, is defined on a boolean vector x = x1x2 . . . xn as
follows:

Tk(x) =

{

1 if
∑

xi ≥ k
0 otherwise

Hence, at most k input bits that are ”1” must reach the output; the rest
can be ”killed”. The energy-efficient threshold circuit, Thr k, described below,
effectively uses only necessary information, killing off the rest, resulting in only
linear worst case switching energy consumption.

Let’s define a sum-to-k function on x = x1x2 . . . xn as:

Sk(x) = min(k,
∑

xi).

Circuit Thrk consist of a comparator bolted onto a circuit Cntk, which uses
(k +1)-ary logic to compute Sk. The comparator compares the output of Cntk

with the constant k. Circuit Cntk contains 2 types of nodes: +-nodes that sum
the inputs, and min-nodes that ‘kill’ inputs exceeding k.

Like the SOR circuit, the Cntk circuit is laid out so that, for any input, the
area of non-zero wires is at most linear in the input size.

The following recurrence describes the boolean sum-to-k function Sk|{0, 1}2n

in terms of Sk|{0, 1}n, addition, and minimum.

Sk(x1, . . . , x2n)

= min(k, Sk(x1, . . . , xn) + Sk(xn+1, . . . , x2n))

= Sk(x1, . . . , xn) + min(k − Sk(x1, . . . , xn), Sk(xn+1, . . . , x2n))

= min(Sk(x1, . . . , xn), k − Sk(xn+1, . . . , x2n)) + Sk(xn+1, . . . , x2n)

The structure of the Cntk circuit directly reflects the above recurrence. We’ll
next describe it’s layout for the case that n is a power of 2. The generalization
to other values of n can be obtained in a straightforward manner by taking the
circuit for the next power of 2, hardwiring the excess inputs to 0, and simplifying
the result. For notational convenience, number the n = 2l inputs 0, 1, . . . , n− 1
and identify them with their length l binary expansion. A binary string s of
length less than l then naturally correspond to the block of 2l−|s| consecutive
inputs having s as a prefix. In particular, the empty string ε identifies the
sequence of all inputs. The above recurrence can now be rewritten as

Sk(s) = min(k, Sk(s0) + Sk(s1))

= Sk(s0) + min(k − Sk(s0), Sk(s1))

= min(Sk(s0), k − Sk(s1)) + Sk(s1)

Figures 4.2 and 4.3 show the layout of circuit Cntk on input block s. The first
one shows the case where |s| = l − 1, i.e. part of the bottom layer of Cntk(ε).
There are 2|s| = n/2 such parts in the bottom layer. The second shows part of
the middle/upper layers of Cntk(ε), where |s| < l − 1.
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FIGURE 4.2. Bottom Layer of an Embedding of Circuit Cntk
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FIGURE 4.3. Middle/Upper Layer of an Embedding of Circuit Cntk
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Each sub-circuit Cntk(s) occupies a rectangular area above the input block
s. It computes Sk(s) which appears at both the top-left and top-right of the
subcircuit, as the outputs of the two addition nodes there. Apart from these
addition nodes, it adds onto the lower layers 6 short (constant length) wires, 2
constant-area subtract-and-minimize nodes (which have the constant threshold
k hardwired into them), and 2 long wires.

All wires in layers B and up have constant bandwidth B = dlog(k + 1)e,
sufficient to carry any value in the range {0, 1, . . . , k}. For the bottom B − 1
layers, where |s| > l−B, Cntk(s) sums over 2l−|s| inputs, hence its wires can do
with bandwidth l− |s|+ 1 ≤ B. This shows that the input node density is not
limited so much by the wire-width as by the size of the non-input nodes. The
width available to these nodes doubles at every layer, while their number of
input bits increases by only 2. Hence, the inputs can be spaced cλ apart, with
c a small constant depending on the implementation of the non-input nodes in
the bottom layers.

Theorem 4.1 For constant k, Sk is energy efficient.

Proof. Take Cntk for increasingly larger n as a circuit family. Since the bottom
layer has depth 1 and each additional layer adds only 2 to the depth, the depth
of the entire circuit is 2l − 1 = O(log n) as required. It remains to show that
Eworst (Cntk) = O(n). The nodes have bounded area, since they have at most
2B input bits. The total number of nodes in Cntk, including input nodes, is

∑

|s|<l

4 = 4(n− 1).

It follows that the node energy of the circuit is only linear. The number of
vertical wires is

∑

|s|=l−1

4 +
∑

|s|<l−1

6 = 2n + 6(n/2− 1) = 5n− 6.

These too have only a linear total area making the ‘vertical wire energy’ of the
circuit linear.

So we are left to consider the ‘long wire energy’. By the triangle inequality, it
suffices to show that E(Cntk, x, 0) = O(n). The simple but crucial observation
is that if the long wire in Cntk(s) running directly above Cntk(s0) (i.e. the left
long wire shown in Figure 4.3) carries a non-zero value, then SK(s) > SK(s0).
Similarly for the long wire above Cntk(s1). More generally, if the long wire
running directly above Cntk(s) is non-zero, then SK(t) > SK(s) for any t
which is a proper prefix of s. Now imagine any vertical cross-section of the
circuit. The number of non-zero long wires though this cross-section is then at
most SK(ε) which clearly cannot exceed k. Thus, the total length of non-zero
long wires is bounded by k times the width of the circuit Cntk, which is kncλ,
and the area involved is no more than Bλ times that. With k,c,B, and λ all
being constant, this proves that E(Cntk, x, 0) = O(n) and thereby the theorem.
2

Since adding a comparator to Cntk adds only constant area and 1 to depth,
we have

Corollary 4.2 For constant k, Tk is energy efficient.
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4.3 Conclusions

We have described a construction that yields fast, minimum energy VLSI cir-
cuits to compute threshold functions and to count up to a constant. Energy
bounds for general counting functions, including majority, remain open.
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5
Associative Storage Modification
Machines

5.1 Introduction

The Storage Modification Machine (SMM ) is a machine model introduced by
Schönhage in 1977 [16]. The model has its predecessor in the Kolmogorov-
Uspenskii machine (KUM ) [10]. Schönhage advocates his model as a model of
extreme flexibility .

The model resembles the Random Access Machine (RAM ) [1] as far as it
has a stored program and a potentially infinite memory structure where it
stores its data. Whereas the RAM uses an infinite sequence of storage registers,
each capable of storing an arbitrarily large integer, the SMM operates on a
directed graph by creating nodes and (re)directing pointers. The main difference
between the SMM and the KUM is that the KUM operates on undirected
instead of directed graphs.

We can approximately model an SMM by a Pascal program that uses records
of pointers to records to describe the directed graph1:

type pointer = ˆnode;
node = record a,b: pointer end;

var head : pointer;

In contrast with Pascal, pointers are not allowed to be nil or undefined;
they must always point to some node. The (finite) set of pointer names, in the
example {a, b}, is called the alphabet of directions, denoted ∆. The pointers
in the graph are labeled with the elements of ∆ such that each node in the
digraph has, for each direction δ ∈ ∆, exactly one outgoing δ-pointer. The
graph thus has regular outdegree |∆|. To complete the analogy between an

1In Pascal ^T denotes the type ‘pointer to T’; a value of this type is the address
of an object of type T. Indirection through a pointer is written as p^, which refers to
the object at which p points.
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SMM and a Pascal program, the latter must be restricted to the use of only one
variable; the pointer head. By repeated application of the Pascal new statement,
the program can create an arbitrarily large data structure. This is addressed
with expressions like head^.b^.a^.b^.b^.a. Similarly, the SMM addresses its
storage with words (strings) over ∆, like babba. In the SMM model, there
is only a conceptual head pointer—at any time, one node, call the center, is
distinguished as the one from where addressing starts. Thus the center, whose
identity can change dynamically, is addressed by the empty word ε, and other
nodes are addressed by following pointers starting from the center.

It has been established that from the perspective of computational complex-
ity theory the SMM (if equipped with the correct space measure [12, 21]) is
computationally equivalent to the other standard sequential machine models
like the Turing machine and the RAM . This equivalence amounts to the fact
that these models simulate each other with polynomially bounded overhead
in time and constant factor overhead in space, thus satisfying the so-called
invariance thesis [17, 22].

For most sequential models there have been proposed parallel machine mod-
els based on the classical sequential version. For the Turing machine Savitch [15]
has proposed a parallel version based on parallel recursive branching; a model
based on nondeterministic forking on a shared set of tapes was described by
Wiedermann [24, 25], but this model turns out to be polynomially equivalent
in time and space with the standard sequential devices. The richness of par-
allel models based on the RAM is even much greater, which makes it hard,
if not impossible to refer to a small set of representative models. There are
models based on shared memory and alternative models based on local storage
and message passing. Hybrid combinations occur as well. Within each class
there exist more refined distinctions like the resolution strategy for resolving
write conflicts in shared memory models, the available arithmetic instructions
and the mechanism for restricting the number of processors activated during a
computation. Moreover, there exist sequential models which become computa-
tionally equivalent to parallel models due to their power to create and manipu-
late exponentially large values in a linear number of steps in the uniform time
measure. Also, by exploiting the alternating mode of computation [5], some
standard sequential devices become computationally equivalent to the parallel
machines.

For a more detailed survey of parallel models we refer to [20, 22]. For the
purpose of the present exposition, it suffices to give some impression of the
overall landscape of parallel machine models.

It turns out that most parallel models proposed in the literature belong to
the so-called Second Machine Class consisting of machine models which obey
the Parallel Computation Thesis . This thesis expresses that the class of lan-
guages recognized in nondeterministic polynomial time on the parallel device
is equal to the class PSPACE of languages recognized in polynomial space on
a sequential device. Conversely all languages in PSPACE are recognized in de-
terministic polynomial time on the parallel machine. In our reading the Parallel
Computation Thesis entails the equivalence of deterministic and nondetermin-
istic polynomial time on the parallel model. The models for which the thesis was
originally formulated obey this more restricted thesis as well. And indeed those
models for which nondeterministic polynomial time seems to exceed PSPACE
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nowadays are held to be more powerful.
Not all parallel models obey the above parallel computation thesis. Some

weak models turn out to be polynomial time equivalent to the sequential mod-
els (the parallel Turing machine proposed by Wiedermann, and its equiva-
lents [24, 25] being a typical example). Other models, like the P−RAM pre-
sented by Fortune and Wyllie [7] deviate from the thesis by recognizing ex-
ponentially time bounded languages in polynomial nondeterministic time on
the parallel device; some parallel devices even recognize arbitrary languages in
constant time [13]. The second machine class therefore represents a frequently
occurring version of the power of uniform unrestricted parallelism rather than
the union of all possible parallel machine models. Second machine class mem-
bers can be characterized as providing the right mixture of exponential growth
potential together with the proper degree of uniformity. The exponential growth
potential is required for the implementation of the transitive closure algorithm
on a directed graph of exponential size (which models the computation graph
of some PSPACE -bounded machine), or the direct solution of the PSPACE -
complete problem QBF in polynomial time. The uniformity is required for
performing the simulation of a polynomial-time computation of the nondeter-
ministic version of the parallel machine in polynomial space. See [22] for more
details on the standard strategies for proving membership in the second ma-
chine class.

In this chapter we propose (as far as we know for the first time) a parallel
version of the storage modification machine which belongs to the second ma-
chine class. To our knowledge few parallel versions of pointer machines have
been investigated in the complexity theory literature. The earliest reference
known to us concerns a parallel version of the Kolmogorov-Uspenskii machine
which was proposed by Barzdin [2, 3]. This machine operates like an irregular
cellular array of finite state automata in a graph which is dynamically changed
by the individual nodes interacting with their neighbourhood. A single com-
putation step resembles a parallel rewrite step in a graph grammar derivation.
In this model all nodes are active in every computation step; if their neighbor-
hood matches the pattern required by the instruction the node will transform
its environment. The Hardware Modification Machine (HMM ) introduced by
Dymond and Cook [6] behaves in a similar way. This model indeed has been in-
vestigated for its complexity behavior. From Lam and Ruzzo [11] it follows that
the machine is equivalent with constant factor time overheads with a restricted
version of the P−RAM of Fortune and Wyllie. From this result one can observe
that the HMM represents another example of the class of devices which are
located beyond the second machine class - its nondeterministic version accepts
NEXPTIME in polynomial time.

The computational power of our ASMM model originates from the possibility
of traversing pointers in their reverse order. By using reverse directions, an
ASMM can address, from a given node x, all the nodes that are associated with
x by pointing to x (hence the name2). More than one node can be reached on
a path by traversing pointers in the reverse direction. Note that at this point
it is crucial that we have based ourselves on the SMM rather than the older
KUM model; in an undirected graph traversing pointers in the reverse direction

2compare with content-addressable associative memory
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makes no sense.
As in the standard SMM model the finite control accesses the storage struc-

ture by means of a single center node. The power of traversing reversed pointers
is used only in two types of instructions: the new and the set instruction. The
first argument of the above two instructions is a path which now may contain
reverse pointers. This path therefore no longer denotes a single node but a set
of nodes (which in fact may be empty). The action described by the instruction
now will be performed for all nodes in this set in parallel. The second argument
of the set instruction is required to be a path consisting of forward pointers
only; it therefore always denotes a single node. Therefore the action performed
by the two instructions above is deterministic.

Our model may be considered to be a member of the class of sequential
machines which operate on large objects in unit time and obtain their power of
parallelism thereof. Other models of this character are the vector machines of
Pratt and Stockmeyer [14], the MRAM proposed by Hartmanis and Simon [9]
and simplified by Bertoni et al. [4], and also the EDITRAM presented by
Stegwee et al. [18, 22].

Evidently our model is one among a number of possible alternatives for
designing a parallel version of the SMM model. In the conclusion of this chapter
we discuss another alternative suggested by an anonymous referee.

Following [22] we denote the class of languages accepted in polynomial time
by the ASMM model by ASMM−PTIME . The class of languages accepted in
polynomial time by nondeterministic ASMM devices is denoted by ASMM−NPTIME .
The class PSPACE as indicated above, denotes the class of languages recog-
nized in polynomial space on a Turing machine. The fact that the ASMM is a
true member of the second machine class is now expressed by the equality:

ASMM−PTIME = ASMM−NPTIME = PSPACE
In the proof of this equality we use the well known PSPACE -complete prob-

lem:
QUANTIFIED BOOLEAN FORMULAS (QBF ) [19] :

INSTANCE: A formula of the form Q1x1 . . . Qnxn[P (x1, . . . , xn)],
where each Qi equals ∀ or ∃, and where P (x1, . . . , xn)
is a propositional formula in the boolean variables x1, . . . , xn.

QUESTION: does this formula evaluate to true?

5.2 The SMM and the ASMM models

Our ASMM model is based on the Storage Modification Machine as introduced
by Schönhage in 1970 [16]. The SMM model resembles the RAM model as far
as it has a stored program and a similar flow of control. It has a single storage
structure, called a ∆-structure. Here ∆ denotes a finite alphabet consisting of at
least two symbols. We denote the reverse of a direction a ∈ ∆ as ā. Furthermore,
∆̄ = {ᾱ|α ∈ ∆} is the set of reverse directions and we let ∆̃ = ∆ ∪ ∆̄.

A ∆-structure X is a finite directed graph each node of which has k =
|∆| outgoing edges which are labeled by the k elements of ∆. In Schönhage’s
formalization, a ∆-structure is a triple (X, c, p), where X denotes the finite set
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of nodes, c ∈ X is the center, and p : X × ∆ → X is the pointer mapping;
p(x, α) = y means that the α-pointer from x goes to y.

There exists a map p∗ from ∆∗ to X defined as follows: For the empty string
ε one has p∗(ε) = c, and otherwise p∗(wa) = p(p∗(w), a) is the end-point of the
a-labeled pointer starting in p∗(w).

The map p∗ does not have to be surjective. Nodes which can not be reached
by tracing a word w in ∆∗ starting from the center c will turn out to play no
subsequent role during the computations of the SMM . In the ASMM model
pointers can be traversed in the opposite direction, and therefore these nodes
no longer can be disregarded as being garbage.

The storage of an SMM or an ASMM is a dynamically changing ∆-structure,
which initially consists of a single node, the center. The ASMM ’s operation is
described by a program, which is a finite sequence of labels and instructions.
Labels can be used in control flow statements; they should occur exactly once
in case the machine is deterministic. Nondeterminism is introduced by allow-
ing multiple occurrences of the labels referred to in jump or conditional jump
instructions. Consequently we only consider nondeterminism in the flow of con-
trol. An alternative would be to design instructions that manipulate the data in
a nondeterministic manner, but such instructions easily lead to a more powerful
model.

In the text below we separate labels and instructions by a colon, whereas
instructions are ended by semicolons.

The instruction repertoire of the SMM and the ASMM includes the common
instructions (the λ’s are labels and β ∈ {0, 1})
input λ0, λ1;
output β;
goto λ;
halt ;

The input instruction reads an input bit β and transfers control to λβ . The
other instructions are straightforward.

Furthermore there exist three internal instructions which operate on memory
- in this case a ∆-structure X . For the SMM the arguments in these instructions
are strings over ∆. For the ASMM the single argument of new and the first
argument of set to are strings over ∆̃; the other arguments (second argument
of set to and both arguments of the if instruction) are strings over ∆. All
arguments are finite strings which are written literally in the program. We first
describe their meaning for the SMM :

1. new W : creates a new node which will be located at the end of the path
traced by W ; if W = ε the new node will become the center; otherwise
the last pointer on the path labeled W will be directed towards the new
node. All outgoing pointers of the new node will be directed to the former
node p∗(W )

2. set W to V : redirects the last pointer on the path labeled by W to the
former node p∗(V ); if W = ε this simply means that p∗(V ) becomes the
new center; otherwise the structure of the graph is modified.
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3. if V = W (if V 6= W ) then 〈instr〉: depending on whether p∗(V ) and
p∗(W ) coincide or not, the conditional instruction 〈instr〉 (conditional
jump suffices) is executed or skipped.

In the ASMM model the ∆-structure can be addressed by words (also called
paths) over the alphabet of normal and reverse directions ∆̃. Every word W ∈
∆̃∗ addresses the (possibly empty) set of all the nodes reachable from the center
by following the consecutive directions and reverse directions in W .

The notion of ‘addressing’ is formalized by the mapping P : ∆̃∗ → 2X ,
defined by:

P (ε) = {c}
P (Wα) = {p(x, α)|x ∈ P (W )}
P (Wᾱ) = {x|p(x, α) ∈ P (W )}.

Note: It will often be convenient to give a name to an address path V ∈ ∆∗.
In the code fragments presented in this chapter, we will use paths having such a
name v as a prefix, in addition to fully explicit paths. This serves two purposes.
First, fixed nodes that have been given descriptive names can be addressed by
their name rather than some arbitrary path (we say that a node is fixed iff it
has a constant address). Second, if we are using one of the pointers from a fixed
node to traverse part of the graph, it can be given a name that more closely
resembles its function: that of a variable. We will use variable names without
specifying which path they stand for, omitting the details of the creation of
spare nodes to provide the required3 pointers.

A node x is said to be directly addressable if it is reachable from the center
by normal (non-reversed) directions, i.e. ∃ V ∈ ∆∗ : P (V ) = {x}.

In order to facilitate the descriptions of the internal instructions, we define
a mapping Q : ∆̃∗ → 2X , from a path to the set of nodes from which the last
pointer on this path originates, by:

Q(ε) = ∅
Q(Wα) = P (W )

Q(Wᾱ) = P (Wᾱ).

The new and set change the ∆-structure from (X, c, p) to (X ′, c′, p′) as fol-
lows:

new W ;
Here, W ∈ ∆̃∗ determines where new nodes are inserted. If W = ε, then
a new center c′ is created such that X ′ = X ∪{c′} and p′(c′, δ) = c for all
δ ∈ ∆. Otherwise, if W = Uα̃ (α̃ is either α or ᾱ), then for every node
u ∈ Q(W ) a new node xu is created such that X ′ = X ∪{xu|u ∈ Q(W )},
p′(u, α) = xu, ∀ δ ∈ ∆ p′(xu, δ) = p(u, α), and c′ = c. All other pointers
remain unchanged.

3In the case of the ASMM , when we use an address like vx̄ with v a variable
name, it is desirable for v not to be an x-pointer, i.e. that the address that v stands
for doesn’t end with the direction x.
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set W to V ;
Here, W ∈ ∆̃∗ determines which pointers are redirected to the node
determined by V ∈ ∆∗. If W = ε, then c′ = P (V ) becomes the new center.
Otherwise, if W = Uα̃, then for every node u ∈ Q(W ), p′(u, α) = P (V )
and c′ = c. In both cases X ′ is the restriction of X to the nodes which
are reachable from c′.

The third internal instruction is the if statement. Since both paths in this
instruction consist of forward pointers only, the meaning of this instruction is
equal for the SMM and the ASMM .

The time complexity we use is simply the number of instructions executed.
We do not concern ourselves with the space complexity ; see [12, 21] for a dis-
cussion of the space complexity of the SMM .

5.3 An illustration of the power of associativity

We demonstrate the power of the ASMM model by showing the capability to
manipulate arbitrarily large sets in constant time.

The model allows the following natural representation of sets. If W is a
word over ∆, and α ∈ ∆ a direction, then P (Wᾱ) is the set of all nodes
having their α-pointer directed to the node P (W ). Assume that our alphabet
is ∆ = {A, B, C, α, β, γ} and that the A, B, and C-pointers from the center go
to three different nodes P (A), P (B) and P (C), none of which is the center. We
will now consider the sets P (Aᾱ), P (Bβ̄) and P (C, γ̄) and see how the standard
set operators can be applied to them by using appropriate set to instructions.
We have chosen A, B and C to be directions so that the instructions with
which we will implement the set operators cannot affect the addressing of the
nodes P (A), P (B) and P (C). As long as no such interference exists, we can
generalize to the case where A, B and C are not elements of ∆ but words over
∆.

The instruction set Aᾱβ to B; has the effect of adding to P (Bβ̄) the set
P (Aᾱ), while the instruction set Aᾱβ to ε; removes from P (Bβ̄) the nodes
which are also in P (Aᾱ).

The figure below now shows how the standard set operators, shown as as-
signment statements in the boxes, can be implemented in terms of set to
instructions. The center ε is used to direct pointers away from A or C.
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?

set Cγ̄ to ε

�
�

�
�Cγ̄ := ∅

?

set Aᾱγ to C

�
�

�
�Cγ̄ := Aᾱ

?

set Bβ̄γ to C

-
set Bβ̄γ to ε
�
�

�
�Cγ̄ := Aᾱ \Bβ̄

?

set Cγ̄α to ε

�
�

�
�Cγ̄ := Aᾱ ∪ Bβ̄

�
�

�
�Aᾱ := Aᾱ ∩ Bβ̄

The following program illustrates how in linear time a set P (ᾱ) of exponential
size can be constructed (with a singleton alphabet):

new ᾱ;
set ᾱᾱ to ε;
...
new ᾱ;
set ᾱᾱ to ε;

Initially only the center exists, so all nodes point to the center. If at some
point 2k nodes exist, all of which point to the center, then after the new
instruction, each of these 2k nodes now points to one of 2k newly created nodes,
which again point to the center. Next the set instruction makes all 2k+1 nodes
point to the center. Hence after k repetitions of these two instructions the size
of the set P (ᾱ) has become 2k.

In the next section we will see how these and similar constructions are used
to process large amounts of data in parallel.

5.4 PSPACE = ASMM−(N )PTIME

The proof of membership in the Second Machine Class is usually split into two
parts:

Lemma 5.1 PSPACE ⊆ ASMM−PTIME

We prove this by sketching an ASMM which solves the PSPACE -complete
problem QBF in polynomial time.

Lemma 5.2 ASMM−NPTIME ⊆ PSPACE
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FIGURE 5.1. storage structure for ∃x0∀x1 : x0 ∧ x1

We prove this by showing how to simulate t steps of a nondeterministic
ASMM on a Turing machine using O(t2) space.

5.4.1 QBF ∈ ASMM−TIME (n2)

The ASMM algorithm we present for solving QBF in polynomial time proceeds
in 8 stages. Let X = {x0, . . . , xk−1} be the set of variables in the formula of
length n, let ∆ = {0, 1, x} and let c be the center. Basically, the algorithm
expands the formula by rewriting the quantifiers, one by one, innermost first,
as follows:

∀xiF (xi) =⇒ F (0) ∧ F (1),

∃xiF (xi) =⇒ F (0) ∨ F (1).

The resulting, fully expanded formula, can be viewed as a tree. It consists of
a complete binary tree T of depth k, with an instance of the formula body B
rooted at each leaf of T . In each such instance, the variable references can be
replaced by the truth values assigned to them along the path from the root to
the leaf. The algorithm does little more than to build and evaluate this tree.

Figure 5.1 depicts the structure built for the example formula ∃x0∀x1 : x0 ∧
x1. The part on the right represents the expanded formula (where some of the
x-pointers have been omitted for clarity). We now briefly summarize each of
the 8 stages:

1. Build a list of nodes c, x0, x1, . . . , xk−1, b linked through the 0-pointer.
Using the 0, 1-pointers, build a representation of the formula body as a
binary tree B rooted at b. The non-leaf nodes of B represent the con-
nectives (and, or, not) while the leaves represent instances of variables.
Create the nodes ∧,∨,¬,⊥ that represent the different types of nodes in
B.

2. Build a complete binary tree T of depth k using the 0, 1-pointers. For a
node at depth i, its 0-subtree represents the case xi = 0 and its 1-subtree
the case xi = 1.

3. Build 2k copies of B rooted at the leaves of T .
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4. For every leaf u of B representing an instance of xi, let the 2k copies of
u direct their x-pointer to either u or c depending on the connective of
u’s parent and the value assigned to xi.

5. For every non-leaf u of B, let the 2k copies of u direct their x-pointer to
either u or c depending on the connectives of u and its parent.

6. For every xi, let the 2i nodes of T at level i direct their x-pointer to either
xi or c depending on the quantifiers of xi and xi−1.

7. Evaluate all copies of B in parallel.

8. Evaluate T .

Recalling Section 5.2, we address the nodes ∧,∨,¬,⊥ by their name, and use
variable-names v, w for the purpose of traversing X and B.

The data structure constructed can be roughly divided in two parts: the
linearly sized input representation (on the left in Fig5.1), and the exponentially
sized formula expansion on the right. For a node v ∈ X ∪ B, let C(v) its set
of copies. For v = xi, these are the 2i nodes at depth i in T , while nodes in
B all have 2k copies. The two parts, left and right, are connected only by the
x-pointers that go from a node in some C(v) to either v or to the center c.
Thus the following invariant holds throughout the execution:

∀v ∈ X ∪ B : vx̄ ⊆ C(v).

Furthermore, the x-pointer from r, the root of T , remains anchored to x0

until evaluation is completed.
For a clear understanding of the construction, it is important to distinguish

between truth-values and their representation. Conceptually, the algorithm
works with truth values, 1 (true) and 0 (false). The leaves of the 2k copies
of B are assigned truth values in the obvious way according to which vari-
able they represent. The other nodes are assigned default truth values, which
are 0 for a disjunction, and 1 for a conjunction or a negation (recall that the
quantifiers have been transformed into disjunction and conjunction). Next, a
bottom-up process repeatedly changes defaults, that are in disagreement with
their evaluated children, into the correct evaluation. In order to facilitate this
process, we use a mixed representation of truth values, as follows.

Call a node u′ ∈ C(u) active if its x-pointer is directed to u or passive if its
x-pointer is directed to c. A truth value is represented by the active state iff
that truth value disagrees with the default of its parent, and with the passive
state otherwise. To summarize:

parent type ∧ ∨ ¬
parent default 1 0 1

active value 0 1 1

As an example, suppose a ¬ node u′ ∈ C(u) has a parent ∨ node. The parent
gets a default value of 0, which is to be changed into a 1 iff either of its children
evaluates to 1. Thus, 1 is the active value for u′. The value 0 is passive for u′,
since it agrees with the default 0 value of its ∨ parent. Since a ¬ node is 1 by
default, u′ is active by default, hence its x-pointer is initially directed to u.
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The representation of the truth value at a node u therefore depends on the
type of the logical connective associated to the parent of u in the tree. This
holds also for the nodes in the tree T which are associated to the variables xi.
In this tree the copies of the variables have been treated as logical connectives
according to the type of the quantifier binding this variable. Note that by
keeping the x-pointer of r directed to x0, it is made active by default.

In the algorithm above stages 1, 2 and 3 are used for building the tree; during
stage 4 the truth values are assigned to all variable occurrences in the copies of
B, and in stages 5 and 6 all intermediate nodes are given their default values.
During the final two stages the entire tree is evaluated.

We next describe each of the above stages in some more detail.
In stage 1 the input is examined and used to construct a linearly sized list

and tree representing the formula. We represent the type of a node u ∈ X ∪B
by directing its x-pointer to one of the special nodes ∨,∧,¬,⊥. As noted before,
these four symbols will also be used as paths addressing the nodes. The leaves
of B are of type ⊥ and have their 1-pointer directed to the appropriate xi.
Existentially quantified xi have type(xi) = ∨ and universally quantified xi

have type(xi) = ∧.
When traversing the list of x′

is, the algorithm needs to be able to detect its
end. Since the nodes in B already use the 1-pointer to point to their children
(or single child in case of a ¬ node), we have the xi direct their 1-pointer to the
center, and thus by comparing vx with ε can tell whether v addresses a node
in X or in B.

In stage 2 the parallel power of the machine is used to build an exponentially
large tree in linear time. This is achieved by the piece of code below:

new v; create r, root of T
set vx to 0; classify it
set v to 0; start X traversal

λ : new vx̄0; 0-children for C(xi)
set vx̄0x to v0; classify in C(xi+1)
new vx̄1; 1-children for C(xi)
set vx̄1x to v0; classify in C(xi+1)
set v to v0; advance to xi+1

if v1 = ε then goto λ; repeat for all xi

The construction of 2k copies of B in stage 3 proceeds analogously. Note that
by now all the leaves of T have their x-pointer directed to b. Traversing B in
preorder, we do the following at each node v:

if vx = ⊥ goto λ2; do nothing at leaves
if vx = ¬ goto λ1; ¬ node has no 0-child
new vx̄0; create 0-child
set vx̄0x to v0; classify in C(v0)

λ1: new vx̄1; create 1-child
set vx̄1x to v1; classify in C(v1)

λ2:

In stage 4, all the x-pointers in the copies of leaves of B are installed. Again
omitting the details of how to traverse B, let w be a leaf of B (wx = ⊥), and
w1 = xi the variable it represents. We show how to install the x-pointers in all
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copies C(w) of w. We assume that w has the active value 1. The case for 0 is
analogous. The code fragment

set v to 0; start traversal of the xj

λ : set v0x̄ to ε; clear C(xj+1)
if v 6= w1 then set vx̄0x to v0; if i 6= j then take both children
set vx̄1x to v0; if i = j then take only 1-children
set v to v0; advance to xj+1

if v1 = ε then goto λ; repeat for all xj

ends with bx̄ equal to the set of leaves of T which have 1, the active value,
assigned to xi. In a similar fashion we can traverse the path from b to w, to end
up with the active nodes of C(w) pointing to w and the passive ones pointing
to c.

The next two stages, 5 and 6, prepare the evaluation by giving default values
to copies of non-leaves of B and nodes in T . This is most easily done by first
setting vx̄ = C(v) for all v in X or internal in B. Then, in a second pass, those
copies that should be passive by default are taken care of by executing the
following instruction for the appropriate v in X and B:

set vx̄ to ε; clear vx̄

Now all that’s left to be done is the evaluation itself. This is done bottom
up—by a post-order traversal of B and then from xk−1 back to x0. With the
other cases being analogous, we restrict ourselves to the evaluation of an ∧-node
w ∈ X ∪ B. Let v be its parent. The default value of w is 1, which is passive
if v has type ∧, or active if v has type ∨,¬. The value of w should become 0
if either of its children has value 0, which is active for them. It should now be
clear that the code fragment

if vx = ∧ then goto λ1; passive or active default?
set w0x̄0̄x to ε; change to passive if 0-child disagrees
set w1x̄1̄x to ε; change to passive if 1-child disagrees
goto λ2;

λ1 : set w0x̄0̄x to w; change to active if 0-child disagrees
set w1x̄1̄x to w; change to active if 1-child disagrees

λ2 :

evaluates node w. The technique used here is essentially the same as in
section 5.3 for computing a union. Because of our symmetric representation, it
works for both ∨ and ∧.

When evaluation is complete, the root of T , r, will have its x-pointer directed
to either x0 or c, depending on the truth value of the input formula and on the
default truth value for x0 which in turn depends on its quantifier. In order to
test whether the x-pointer from r is directed to x0, we will use the fact that
x0x̄ ⊆ {r} and p(x0, x) ∈ {∧,∨}. The instruction

set 0x̄xx to ε;

changes p(x0, x) to ε iff 0x̄ is nonempty, which is equivalent to p(r, x) = x0.
Combining all this information yields the value of the formula.
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Regarding the time complexity, the most time-consuming stage is number 4,
where for each leaf of B, both X and B are traversed, requiring at most n2

steps. Hence the complete algorithm runs in quadratic time.

5.4.2 ASMM−NTIME (t) ⊆ SPACE(t2)

The simulation which proves this inclusion is relatively straightforward and
employs previously known methods [14, 9]. We can write down in polynomial
space a trace of the computation containing information on the sequence of
instructions executed. Since the machine being simulated is nondeterministic
this trace is guessed. Next it is verified by means of a system of recursive pro-
cedures and some other arrays containing polynomially sized information that
this trace indeed represents an accepting computation. The if , new and set to
statements pose the main problems, since their impact on the ∆-structure
requires repeated recomputation of the current state of the ∆-structure. In
polynomial space we cannot explicitly store the possibly exponentially large
∆-structure of the ASMM-machine, so an implicit representation is called for.
This will consist of three arrays, and three mutually recursive functions. The
arrays are

1. instr [i] holds the instruction executed at step i

2. nodes [i] holds the number of nodes at time i

3. center [i] holds the center at time i

The simulation starts at time 0 and has step i (i ≥ 1) leading to time i.
Each array is of length t, the number of steps to be simulated, and each array
element fits in t bits since the number of nodes can at most double after each
step. Every node will have a unique number, and the resulting ordering of nodes
is used for numbering nodes created by a new instruction. More precisely, a
new W ; instruction at step i is simulated as follows:

If W = ε, then center [i] = nodes [i− 1] and nodes [i] = nodes [i− 1] + 1.
Otherwise, if W = Uα̃, then center [i] = center [i−1] and nodes [i] = nodes [i−

1] + |Q(W )|. Semantically, if Q(W ) = {x0 < x1 < . . . < xk−1}, then at time i,
p(xj , α) = nodes [i− 1] + j, for j < k = |Q(W )|.

For all other instructions, nodes [i] = nodes [i− 1] and center [i] = center [i−
1], except that the instruction set ε to V ; sets center [i] to P (V ). In order
to compute P (V ) and to simulate the if instruction, we use the following
functions:

p(x, α, i) returns the number of the node p(x, α) at time i

P (x, W, i) returns whether x ∈ P (W ) at time i

Q(x, W, i) returns whether x ∈ Q(W ) at time i.

These functions satisfy the equations

Q(x, ε, i) = false

Q(x, Uα, i) = P (x, U, i)

Q(x, Uᾱ, i) = P (x, Uᾱ, i)
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P (x, ε, i) = (x == center [i])

P (x, Uα, i) = (∃ 0 ≤ y < nodes [i] : P (y, U, i) ∧ p(y, α, i) == x)

P (x, Uᾱ, i) = P (p(x, α, i), U, i)

p(x, α, 0) = 0

which shows that they can be easily computed, apart from the case p(x, α, i)
for positive values of i. The action of p in this case depends on the value of
instr [i], the only interesting values of which are new and set .

Consider first the case instr [i] = new W . If x ≥ nodes [i − 1] then (using
Q(y, W, i)) the difference x − nodes [i − 1] can be used to find the y in Q(W )
which ‘generated’ and now points to x (unless W = ε, in which case p(x, α, i) =
center [i−1]). Now p(x, α, i) = p(y, δ, i−1), where δ is the direction W ends in.
On the other hand, suppose x < nodes [i− 1]. If W = Uα̃ (i.e. α-pointers may
have changed) and Q(x, W, i − 1), then x has generated p(x, α, i) = nodes [i−
1] + |{y < x|q(y, W, i− 1)}|. Otherwise p(x, α, i) = p(x, α, i− 1).

Second and last, consider the case instr [i] = set W to V . If W = Uα̃ and
Q(x, W, i−1), then p(x, α, i) is the unique y satisfying P (y, V, i−1). Otherwise
p(x, α, i) = p(x, α, i− 1).

These functions can easily be coded on a Turing Machine using recursion
(stack frames). The recursion depth is bounded by ct, where c is a constant
depending only on the maximum path length of the ASMM program. Each
stack frame holds a return address and some node numbers and counters each
of which fits in t bits. Together with the three arrays, space O(t2) suffices for
the simulation of t steps of the ASMM.

5.5 Conclusion

Of all the parallel models which have been shown to belong to the Second
Machine Class, the ASMM is the first to obtain its power from the use of asso-
ciative addressing, thus making it an interesting addition to the realm of Second
Machine Class devices. It provides another example that a small modification
of a machine model can enforce a substantial increase in computational power.
In [4] it was shown that this increase is provoked by adding multiplicative in-
structions to the unit-time standard RAM model. Similarly the EDITRAM
model obtains its power from introducing a few edit operators that are avail-
able on most real life text editors anyhow. In the ASMM model it turns out
that traversing pointers in the reverse direction is all we need to obtain full
parallel power. At the same time, the fact that the storage structure of the
ASMM is manipulated by a finite program that interacts with the ∆-structure
by means of a single center seems to be the main reason why the machine has
not become too powerful. As shown by Lam and Ruzzo [11], a model where the
nodes become independently active finite automata becomes equivalent with
a restricted version of the P−RAM of Fortune and Wyllie. This suffices for
making the nondeterministic version more powerful than PSPACE (except for
the unlikely case that PSPACE = NEXPTIME ). This situation resembles the
relation between the SIMDAG described by Goldschlager [8], where a single
processor broadcasts its instructions to a collection of peripheral processors
and the P−RAM model of Fortune and Wyllie [7] where the local processors
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are independent.
Clearly there are other models which could serve as a parallelized version

of the SMM . In our model the set-to instruction is rather limited. Since its
second argument addresses a single node, it cannot be used for setting different
pointers to different destinations. This severely limits the scope of proofs that
our machine is indeed so powerful. A more conventional approach, based on
the construction of the transition graph of a polynomial space bounded Turing
machine, and the computation of its transitive closure by pointer jumping—
as suggested by the referee—is rendered infeasible by the limitation of the
set-to instruction. Overcoming this limitation would require a different flavour
of set-to instruction. A natural possibility is to allow the conventional set-to
instruction of the SMM to be executed in parallel with respect to many different
‘centers’, the latter being specified by a third argument which is a string in ∆̃.
This model has some drawbacks, however. One is the possibility of conflicts
arising when a pointer must be set to one node when addressed through one
center, and to another node when addressed through another center. Resolving
this problem would probably detract from the elegance of the model, one of
its prime features. Another problem is that it becomes harder to manage all
the pointers, since there is no simple way in which to direct a bunch of them
to some fixed node where they can be ‘out of the way’. Thus it is not a strict
generalization of our model, although it should be possible to simulate our set-
to instruction with this new one by keeping around an extra direction to always
point to the real center.
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6
How to Construct an Atomic Variable

6.1 Introduction.

Communication plays a vital role in any distributed system, allowing multiple
processors to share and exchange information. Conventionally this communica-
tion is based on mutually exclusive access to a shared variable. This is the case
not only in a shared memory system, but also at the two endpoints of a link
in a message based system. Unfortunately, this exclusive nature of access may
force one user of such a variable to wait for another user and therefore impedes
the parallelism inherent in distributed systems. In the last years interest has
focussed on wait-free variables, which can be accessed concurrently without any
form of waiting. The question is how to construct such variables in terms of
lower-level hardware, like flip-flops.

Peterson was one of the first to investigate this question in [15], giving a
construction for a single-writer, multi-reader, multi-bit atomic variable from
single-writer, multi-reader atomic bits. Later, Lamport [10], sparked off inter-
est in the subject by developing a precise theory and formalisms—apart from
presenting some solutions to subproblems. It is worth noting that most papers
use the word “register” instead of variable.

The ultimate goal is to build a variable accessible to any fixed number of
users—each having write and read capabilities—which can hold any fixed num-
ber of values, and whose accesses behave atomically. The latter means that for
any sequence of operations on the variable, the partial precedence order (de-
fined later) among those operations must have a total extension (for external
consistency) such that each read operation returns the value from the write
operation which is the last to precede it in the total order (for internal consis-
tentency).

The construction of this “ultimate” variable is not done directly from the
most primitive kind of variable. Rather, this task is more conveniently split into
two subtasks: the construction of atomic, multi-bit, single-writer, single-reader
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Paper used write read
[15] 3b + 10 3b + 13 3b + 23
[9] 4b + 39 b + 5 b + 26
this 4b + 8 b + 2 b + 4

TABLE 6.1. worst case number of bits

variables and next the construction of atomic, multi-bit, multi-user variables
from the former type.

This partition can be justified by the nature of the problems involved. In
the first construction (as in [10]), the multi-bit value is to be distributed over a
multiple number of bits. In the second construction (as in [20]), the value of the
multi-user variable is replicated among all users1 along with control information
which allows each user to identify the most recently written value. This is the
more complex problem, as witnessed by the fact that many proposed (and
often proven) solutions were later found to be erroneous. The interested reader
is referred to [2, 8, 14, 16, 20].

In this chapter we attack the first problem, and also give special attention
to the case of constructing a single-bit atomic variable.

6.2 Comparison with Related Work

There are basically two approaches that can be taken in order to construct
a multi-bit variable from a linear number of single bits. The first was taken
by G.L. Peterson in [15] and involves keeping 3 copies of the multi-bit value,
called the tracks (in the original paper, they are called buffers). Apart from the
3 tracks, there are some control bits which we collectively call the switch. In
this approach the writer writes the new value to all three tracks. The reader
reads from all tracks, but in a different order. The switch allows the reader to
determine which track was read without interference from the writer.

In Kirousis et. al. [9], the second approach was taken. The idea is that the
writer and the reader access only a single track, and that the switch ensures
that they never access the same track simultaneously. The price to be paid for
the reduced number of track-accesses is the necessity of using four tracks.

Both papers mentioned have protocols for multiple readers but we’ll consider
the case of one only.

In this chapter a simplification of the single reader construction of [9] is
presented. Table 6.2 gives a comparison of these constructions for a b-bit atomic
variable. The “used” column displays the total number of safe bits used in
the construction (“space complexity”). The “write” (“read”) column gives the
worst case number of safe bits that must be accessed in a write (read) action
on the atomic variable. A trade-off between time and space is clearly visible.

We also present a solution to the special case of constructing an atomic
bit with a minimal number of non-atomic bits. This problem was solved in-

1to have a communication path between any pair of users, we need to maintain
Ω(n2) copies.
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dependently and earlier by J. Burns and G. Peterson [3], using a very similar
construction. The use of finite state machines for (automated) correctness ver-
ification is related to the work by Clarke and Emerson (e.g. [4]) and is new to
this area.

6.3 Preliminaries

In this chapter we consider variables which can be written by one user, called
the writer, and read by another, the reader. Both users may be accessing the
variable concurrently without ever having to wait for one another. This means
that no assumptions are made about the relative speed of the users, and that
the correct operation of the variable is not impaired by halting either one. As
stated in the introduction, we aim to construct an atomic, multi-bit, single-
writer, single-reader variable. The objects we use in this construction are safe,
single-bit, single-writer, single-reader variables, or simply safe bits. These are
the mathematical counterparts of flip-flops, in the sense that real-life flip-flops
can be argued to satisfy the safety property. Before giving rigorous definitions
for the notions of safe and atomic, we first state some preliminary definitions.

In order to distinguish the accesses to the constructed atomic variable (the
higher level) from the accesses to the safe bits (the lower level), we call the
former actions, and the latter subactions. As we will see, each higher-level
action is composed of a number of subactions—where the wait-free condition
requires this number to be bounded.

Let V be a variable and A (the set of accesses) be the union of a set of writes
W to V and a set of reads R from V . The result of a read is a value which is
said to be returned by that read. Each access a ∈ A occupies a time interval
(s(a), f(a)), where s(a) is the start time and f(a) the finish time of access
a. All start and finish times are assumed to be pairwise distinct. We define a
precedence relation → on A as follows: a → b iff f(a) < s(b). We say that a
overlaps b, or a and b overlap, if they are→-incomparable, that is, a 6→ b∧b 6→ a.
Complete overlap of a by b means that s(b) < s(a) < f(a) < f(b). We assume
that the set {a|a→ b} is finite for any action b (finite history assumption). We
call the pair (A,→) a run. The writes in W are totally ordered by →, and so
are the reads in R, in accordance with the requirement that a user can only
perform one access at a time.

We relate the reads to the writes in terms of a reading function. A partial
function π : R → W is a reading function if for every read r ∈ R on which π
is defined, π(r) writes to V the value returned by r. Unless explicitly stated,
the reading function will be total (non-total reading functions will be needed
in the definition of safety). We call the triple (A,→, π) a system execution.

We can now define atomicity:

Definition 6.1 A system execution σ = (A,→, π) of the variable V is atomic
iff there is a total extension →′ of → consistent with π, i.e. for every read
r ∈ R, π(r) is the last write preceding r in the total order →′.

In the case of a single writer, a simplification of the general definition above
can be given which avoids the use of a total ordering, [10, 14, 1]:

Definition 6.2 A system execution σ = (A,→, π) of the single-writer variable
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V is atomic iff the following three properties hold for all r, r1, r2 ∈ R and
w ∈ W :

A0 not (r → π(r))

A1 if r1 → r2, then not (π(r2)→ π(r1))

A2 not (π(r) → w → r)

Equivalence of definitions 6.1 and 6.2 is shown by proving ([10])

∃consistent total extension→′ ⇔ → satisfies A0, A1, A2

First of all, if any of the three conditions on → is violated, then it will clearly
be impossible to find a consistent extension→′, thus proving the first direction.
To prove the converse, we construct the following→′: Merge the reads into the
totally ordered set of writes, such that each write w is immediately followed by
the reads r with π(r) = w, putting the reads in some total order that extends
their partial precedence order. Naturally, this order is consistent with π. By A1,
the merging process preserves the ordering among reads. A0 and A2 ensure that
the precedence between a read and a write is also extended. If w → r, then by
A2, ¬(π(r) → w), so by the construction of→′ we have w →′ r. If r → w, then
by A0, π(r) → w, so again by the construction of →′ we have r →′ w. 2

Thus, in atomic runs, the partially ordered set of accesses can be linearized
while respecting the logical read/write order. In addition to definition 6.2, we
have:

Definition 6.3 σ is regular iff A0 and A2 hold. σ is safe iff (A−R′,→, π) is
atomic, where R′ = {r ∈ R|∃w ∈ W(w 6→ r∧r 6→ w)} is the set of reads which
overlap a write (in which case π is left undefined).

Thus, in a safe run, a read overlapping a write may return any value in the
domain of the variable. The other actions will then be totally ordered, such
that each non-overlapping read returns the value written by the last preceding
write.

In a regular run, a read may return the value of either the last completed
write or of any of the overlapping writes. Thus, during a long write, one read
may obtain the new value, and the next read the old value. This violation of
A1 is called a new-old inversion, and is what distinguishes a regular run from
an atomic one.

Definition 6.4 Variable V is atomic (regular,safe) iff for each of its runs
(A,→), there exists a reading function π, such that the system execution (A,→
, π) is atomic (regular,safe).

It is clear from these definitions that an atomic variable is regular, and that
a regular variable is safe. Whereas an atomic bit appears to change its value
in a single, indivisible time instant, the value of a changed regular bit flickers
during the change, and only stabilizes to the complementary value when the
changing write finishes.

We call a reading function normal if it satisfies A0, i.e. it doesn’t map a read
to a write which starts after the read finishes. In practice, only normal reading
functions are considered.
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6.3.1 Making Safe Bits Regular

A well known technique to make a safe bit regular ([10]), is to avoid writing the
old value to the bit, i.e. only changing it. Then for a read overlapping a write,
the value it returns, be it a 0 or a 1, will always be either the value of the last
completed write, or the value of an overlapping write. The safe bits used in our
constructions are only changed, not overwritten with the old value, and so we
can assume for them the existence of a total reading function, as for regular
bits.

6.4 Problem Statement

It remains to define what it means to construct an atomic variable from safe
bits. (Recall that in this chapter all variables are single-writer, single-reader,
hence two users). Such a construction is defined by an architecture and a pair
of protocols, one for each user. The architecture specifies the number of safe
bits, their names and how they are connected among the two users. Each safe
bit can be connected to the reader and the writer in one of only two ways:
changed by the writer and read by the reader, or changed by the reader and
read by the writer. The user that can change a bit is said to be the owner.

A protocol specifies how the writer (reader) can change (read) the atomic
variable in terms of changes to and reads from the safe bits. In addition, the
protocols may make use of local variables, which can be viewed as safe bits that
are changed and read by the same user. These are however not considered part
of the architecture, which specifies only shared bits.

We consider only wait-free protocols, i.e., the number of safe bit accesses in
a single protocol execution must be bounded by a fixed constant. This require-
ment forbids solutions in which a user might have to wait for a safe bit to
change value.

A read or write action on the atomic variable consists of an execution of the
corresponding protocol. We use the terms “action” and “protocol execution”
interchangeably. A construction is initialized by an initial write that sets the
atomic variable to the value 0. This allows the definition of a reading function
on every read action. All other shared bits and local variables are also initialized
to 0. Finally, each run of the construction must satisfy the atomicity criterion.

In the next section we consider the special case of a 2-valued atomic vari-
able. After proving that 3 safe bits are needed to construct an atomic bit, we
develop a construction that achieves this lower bound, followed by a proof of
correctness. The general case of a b-bit (2b-valued) atomic variable is dealt with
in Section 6.6.

6.5 Optimal Construction of Atomic Bits

6.5.1 A Lower Bound on the Number of Safe Bits needed to

Construct an Atomic Bit

We demonstrate that 3 safe bits are required in a construction of an atomic
bit, in particular, 2 bits owned by the writer, and 1 owned by the reader.
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The reason that a single bit (call it V ), owned by the writer doesn’t suffice,
is exemplified by a run (A,→, π), where A = {w, r1, r2}, and →= {(r1, r2)},
i.e. write w (which changes the atomic bit from its initial value 0 to 1), overlaps
two reads r1 and r2. Without loss of generality, we can assume that the writer
changes V at least once during the execution of its protocol. We may also
assume that, depending on the values obtained by reading V , but independent
of the values of local variables at the start of a read, the reader protocol can
return both a 0 and a 1. Consider now the case when both reads occur during
the first time that w changes V . Then due to the flickering of V , it is possible
for r1 to return 1 while r2 returns 0. But now there is no reading function which
satisfies all three atomicity conditions.

The example shows that a communication channel from the writer to the
reader of only one safe bit is too narrow—at least 2 safe bits are necessary.

In [10], Lamport has shown the necessity of two-way communication, i.e., the
reader must own at least 1 bit. The sequence of safe bits changed during the
protocol execution of the writer, must therefore depend on information that it
receives from the reader.

Lemma 6.5 A construction of an atomic bit from non-atomic, safe bits requires
at least 2 bits owned by the writer, and at least 1 bit owned by the reader.

The next few sections deal with the development of a solution meeting these
bounds. Let us first describe the architecture of the construction.

6.5.2 The Architecture

We aim to attain the optimal number of shared safe bits, which is 3. As shown
above, the reader will be the owner of one of these, which we’ll call “R.” One of
the two bits owned by the writer will be used to hold the value of the simulated
atomic bit and is called “V.” The other bit owned by the writer is named “W”.
To sum up, we have the following 3 safe bits:

Writer →V→ Reader value of simulated atomic bit

Writer →W→ Reader flag for writer

Writer ←R← Reader flag for reader

6.5.3 The Protocols

In the protocols, we make use of the following statements. The owner of a safe
bit B can execute the statement “change B” to change its value. Remember
that during this change, the value may flicker between 0 and 1. Local variables
have lower case names to distinguish them from the shared bits. In all the
protocols presented here, the local variables are 2-valued (bits), and are used
to hold a copy of V . For this purpose there is a statement “read loc := V,”
whose effect is to read V and store the result in the local variable loc. Given the
regularity of a changed-only safe bit, we know that the changes to and reads
from it obey the conditions A0 and A2 (see definition 6.4), for some reading
function. There is the conditional “if test then statement.”, with the obvious
semantics. The test is either ”W==R” or “W<>R.” Performing such a test is done
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by first reading the flag owned by the other user (e.g. the writer reads R in
its test). This read is implicit in the test, and is not stated explicitly in the
protocol as a separate read statement. In order to be able to compare this
value against the value of one’s own flag, we assume that the owner of a flag
keeps track of its value. This abbreviated notation for tests will prove to make
the protocols more concise and readable. The final statement in our repertoire
is “return loc,” with loc again a local bit. It is used by the reader to exit the
execution of its protocol and to specify the return value.

We can now state the protocol:

WRITER PROTOCOL READER PROTOCOL

change V 1. if W==R then return v

if W==R then change W 2. read x := V

3. if W<>R then change R

4. read v := V

5. if W==R then return v

6. read v := V

7. return x

6.5.4 Handshaking

A handshaking mechanism is employed to let the reader detect when a change
of V is finalised. After changing V , the writer performs a handshake by trying
to make W 6= R. The basic plan for the reader is to perform a handshake
(trying to make W = R) in between two reads of V . If afterwards, W is found
to still equal R in value, then the read returns the second value, and until the
next writer’s handshake is detected, future reads can return this same value
with no risk of new-old inversions. If, on the other hand, W is found to have
been changed by the writer, then the first value, x is returned. In that case,
v, which might be returned in line 1 of the next read action, is assigned the
current value of V , since that cannot form a new-old inversion with x.

6.5.5 Proof of Correctness

Let (A,→) be a run of the atomic bit construction. Then we can find a lower
level regular run for each of the three safe bits, consisting of all the changes to
and reads of that safe bit, and the precedence relation defined from their start
and finish times. Let π′ be a reading function that makes the run on V regular.
Let W be the set of write actions in A, and R the set of read actions in A.
We must prove the atomicity of σ = (A,→, π) for some reading function π. We
define π in a natural way as follows. Let r ∈ R be any read action and let loc
be the local variable returned by r. We can define ρ, the subread of r’s return
value, as the last subread from V into loc before r returns. E.g. if r returns in
line 7 then ρ is the read in line 2 of r, and if r returns in line 1, then ρ is the
read in line 4 or line 6 of some earlier read action. Let w be the write action
which executed π′(ρ) in the first line of its protocol. Then we define π(r) = w.

Proof of A0 Intuitively, since the underlying bits are safe, a read action can
only return the value of a past or concurrent (overlapping) write action. We
formally prove A0 by contradiction: Assume that for some r ∈ R, r → π(r).
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Let ρ be the subread of r’s return value as above. Then f(ρ) < f(r) and by
definition of π, s(π(r)) < s(π′(ρ)). Together these imply that ρ→ π′(ρ), which
contradicts the safety of π′.

Proof of A1 The proof is again by contradiction. Let r1, r2 ∈ R be such
that r1 → r2 and π(r2) → π(r1). By the finite history assumption, we can let
r1 be the first such read action. Let ρi, i ∈ {1, 2} be the subread from V of ri’s
return value. For notational convenience, we use the element-of-set symbol ∈
to denote that a safe bit access is part of a read or write action. Then ρ1 ∈ r1

if r1 returned in line 5 or line 7. Otherwise, if r1 returned in line 1, then by
the minimality of r1, ρ1 is in the immediately preceding read action. Defining
ωi as π′(ρi), we also have ωi ∈ π(ri). From π(r2) → π(r1) follows ω2 → ω1.
According to the reader protocol, r1 → r2 implies ρ1 = ρ2 or ρ1 → ρ2. Since
π(r1) 6= π(r2), ρ1 6= ρ2 hence ρ1 → ρ2. Since the run on V is regular, we
have s(ω1) < f(ρ1) (from A0) and s(ρ2) < f(ω1) (from A2). Since ω1 lasts
throughout the time interval [f(ρ1), s(ρ2)],

all reads from W between f(ρ1) and s(ρ2) obtain the same value. (6.1)

We now consider all three possible cases of the position of ρ1.

read x := V in line 2 Then r1 returned in line 7 of its protocol execution,
after seeing W 6= R in line 5. However, at that point, the value of R is
the same as the value read from W in line 3. Because ρ2 is either the
read in line 6 of this protocol execution, or a later read, we have found a
contradiction with (6.1) above.

read v := V in line 4 Then r1 returned in line 5 of its protocol execution,
after seeing W equal to R. Since ρ1 → ρ2, ρ2 must be part of some
later read action which sees W different from R in line 1 of its protocol
execution. This contradicts (6.1) again.

read v := V in line 6 Then r1 returned in line 1 of its protocol execution
(which immediately succeeds that of ρ1) after seeing W equal to R. This
case therefore reduces to the previous one.

We have shown that the assumed violation of A1 leads to a contradiction.
Proof of A2 The proof is once again by contradiction. Let r ∈ R, w ∈ W be

such that π(r)→ w → r. Let ρ be the read from V of r’s return value as usual,
and ω the write to V in w. From π′(ρ) ∈ π(r) and ω ∈ w follows π′(ρ) → ω.
By regularity of V , ¬(ω → ρ), in other words, s(ρ) < f(ω). Hence ρ 6∈ r, and
r must have returned in line 1 of its protocol execution after seeing W = R.
This means the interval [f(ω), s(r)] is not free from changes to R, since write
w executes line 2 of its protocol in this interval. So R must have been changed
between ρ and r. According to the reader protocol, this is done in line 3, and is
followed by a read v := V statement. This read between ρ and r contradicts
the definition of ρ. This completes the proof. 2

Lemma 6.5 and the given construction prove the following

Theorem 6.6 3 safe bits are necessary and sufficient to construct a single-
reader, single-writer, atomic bit.
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6.6 The 4-track Protocol

We return to the general problem of constructing a b-bit atomic variable with
a linear number of safe bits. The safe bits are divided into a number of control
bits, collectively called the switch, and several b-bit tracks, whose purpose is
to hold the values of the atomic variable, We start out with a proof of why 4
tracks are necessary, a result due to Burns and Peterson [3]. It is a variation
on proofs showing the impossibility of wait-free consensus ([6, 3, 1]).

Consider the initial state of a construction, where both the reader and the
writer are about to start their protocol. In this state, the choice of which track
the reader will access in its next action is not fixed yet, since a write using
a new track could or could not occur before the read starts. Such a state,
from which different runs lead to different choices of track to read are called
‘bivalent’, while states in which the choice is fixed are called ‘univalent’. For
a wait-free construction, there can be no infinite run of bivalent states (we
restrict attention to runs where the read and write protocol are each executed
only once). Thus, from the starting state we can reach a bivalent state, say S,
both of whose successors Sw and Sr are univalent, where the writer performs
subaction x to get from state S to Sw, and the reader perform subaction y to
get from state S to Sr. The choice of track is fixed in Sw and Sr, but different.
If Swr is the state reached from Sw by a subaction of the reader, then the choice
of track in Swr is also different from that in Sr. So the reader’s local state must
be different between Swr and Sr. It follows that x is a write subaction, and y a
read subaction, accessing the same variable. To the writer, states Sw and Srw,
reached from Sr by executing x, are indistinguishable, while the reader will
access different tracks from these states. If the writer now finishes its protocol
and proceeds to write a second and third value, then these 2 new values will
have to be written to new tracks to ensure collision-freedom. This shows that
4 tracks are necessary. It remains to show that 4 tracks suffice.

We conveniently split the 4 tracks into 2 groups T0, T1 of 2 tracks Ti,0, Ti,1

each. In order to avoid collisions, the writer always tries to go to the group
other than where it sees the reader. The reader in turn wants recent values,
hence it tries to go to the group where it sees the writer. Both the reader
and the writer use part of the switch to signal the other user about the group
they are in. For the moment this involves an atomic bit W for the writer, and
an atomic bit R for the reader. In addition, the switch has two trackdisplays
D0, D1, one for each group, displaying the most recently completed track. For
the moment, these too are atomic bits. Later we will show how to use safe bits
instead. Now when the writer completes a write action, the new value will be
on track TW,DW

.
In summary, the architecture consists of 4 tracks of b safe bits each and the

following 4 atomic bits, which comprise the switch:

Writer → D0 → Reader group 0 trackdisplay

Writer → D1 → Reader group 1 trackdisplay

Writer → W → Reader writer’s group

Writer ← R ← Reader reader’s group
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We can now informally state the writer protocol. The writer starts by reading
R, the group that the reader is in, and compares it to W , the writer’s group.
If they are equal, then the reader must have left the other group, so the writer
simply writes to a track in that other group, and changes W afterwards. It
chooses the displayed track so that it doesn’t have to change the trackdisplay.
If R is different from W , then the writer writes to the other track in its group
and changes the trackdisplay DW afterwards.

The reader protocol is then as follows: The reader starts by reading W to see
if the writer has vacated the reader’s group. In that case the reader changes R
and follows the writer to the other group.

Next, the reader reads the trackdisplay DR of its group. It then reads the
track TR,DR

and returns the obtained value.
In a programming language, not unlike the one introduced in section 6.5.3,

the above protocols look like:

WRITER PROTOCOL READER PROTOCOL

1. if R==w then if W<>r then

2. w := 1-w r := 1-r

3. write track T[w,d[w]] change R

4. change W endif

5. else read d := D[r]

6. d[w] := 1-d[w] read track T[r,d]

7. write track T[w,d[w]]

8. change D[w]

9. endif

The lower-case local variables hold copies of the similarly named shared
bits. An array notation is used for the tracks and displays instead of the index
notation that we reserve for the text. The access to a track has been compressed
to a single statement since we can ignore how many bits must be changed and
in what order. For notational convenience, we do not mention the value to be
written in the writer protocol or the value to be read in the reader protocol.
Since each protocol execution involves exactly one track access, the meaning
should be obvious.

Consider a run of the above construction. Each action contains lower-level
accesses to the atomic bits of the switch and to the safe bits of a track. By
definition 6.1, the partial order on the accesses to each atomic bit can be
extended to a total one. Intuitively, the accesses to different atomic bits can
then also be totally ordered. In [1], it was shown that this is indeed the case,
if the precedence relation is defined in terms of a global time2. Using this total
ordering on all atomic bit accesses, we can model a run by a sequence of state
transitions, each transition corresponding to an atomic bit access. In this model,
the states of the writer are:

0 idle, i.e., before the atomic read of R in line 1,

2This global time assumption is equivalent to the interval axiom: if a → b∧ c → d,
then a → d or c → b.
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W<>R
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FIGURE 6.1. state diagram of 4-track construction

1 between the atomic read of R and the atomic change of W in line 4, when
it is writing track T1−W,D1−W

,

2 between the atomic read of R and the atomic change of DW in line 8, when
it is writing track TW,1−DW

.

Thus, the writer is always moving from state 0 to either state 1 or state 2
(depending on the outcome of the test), and then back to state 0. The states
of the reader are:

0 idle, i.e., before the atomic read of W in line 1,

1 between the atomic read of W and the atomic change of R in line 3,

2 just before the atomic read of DR in line 5,

3 after the atomic read of DR, when it is reading track TR,d.

Thus the reader is always moving from state 0 to either state 1 and then to
state 2 or directly to state 2, then on to state 3, and finally back to state 0.

Now figure 6.1 shows all possible transitions in a run of the 4-track construc-
tion. It can be easily checked that the invariants in the nodes hold. Note that
it is impossible for the writer and the reader to be in state 1 simultaneously.
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Lemma 6.7 The 4-track construction is collision-free.

Proof. We denote the combined writer and reader state in a pair (ws, rs).
Collisions can only occur in states (1, 3) and (2, 3), when both the writer and
the reader are accessing a track.

In the former case, the writer is in group w = 1−W , while the reader is in
group r = R. From the diagram we see that W = R in state (1, 3), so the users
are accessing tracks in different groups.

In state (2, 3), the writer writes on track dw = 1 − DW in group w = W ,
while the reader reads from track d in group R. The diagram shows that either
W 6= R or d = DR, so the users are again accessing different tracks. 2.

6.6.1 Correctness

Given lemma 6.7, it remains to show that for every run (A,→), there exists
a reading function π such that σ = (A,→, π) satisfies the three atomicity
conditions. As before we may assume that the set of all atomic bit accesses is
totally ordered by →, hence we can use the state model.

Lemma 6.7 allows us to define the reading function π as the “union” of the
four reading functions that make each track atomic. This means that a read
is mapped to the write which was the last to access the track from which the
read obtained its value. We now prove each of the three conditions in turn.

Proof of A0 The reading function is obviously normal by the safety of the
track-bits.

Proof of A2 The proof is by contradiction. Let r ∈ R, w ∈ W be such that
π(r) → w → r.3 Assume without loss of generality that w writes on track T0,0

and that D1 = 0 at time f(w). Then at the same time, W = 0 and D0 = 0.
Consider now the 4 possible tracks that r can read from:

T0,0 This contradicts the assumption that π(r) precedes w.

T0,1 In this case, r reads d = 1 from D0, which requires that the writer changes
D0 to 1 between f(w) and the read of D0 by r. But according to the writer
protocol, this change is preceded by the writing of track T0,1, implying
w → π(r) and hence leading to a contradiction.

The last two cases are similar and we need only show that the track read
by r must have been written after w.

T1,0 In this case, r reads 1 from W , which requires that the writer changes W
to 1. This is preceded by the writing of track T1,0.

T1,1 In this case, r reads d = 1 from D1, which requires that the writer changes
D1 to 1. This is preceded by the writing of track T1,1.

In all three cases, we see that r cannot read a value older than that of w,
because the display (W, D0, D1) doesn’t change until the new track has been
written. In other words, once the display is set, every new read action must
read either the track on display or a more recently written one.

3It will be clear from context whether we mean the write action w or the similarly
denoted writer’s local copy of W .
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Proof of A1 We claim that A1 follows from A2 and show this by deriving
a violation of A2 from a violation of A1. Let r1, r2 ∈ R be such that r1 → r2

and π(r2) → π(r1). By definition of π and lemma 6.7, r1 accesses some track,
say T0,0, after π(r1) does so. But since r1 cannot access the track until after
π(r1) changes an atomic bit (W or D0), we have that f(π(r1)) < f(r1) < s(r2),
hence with w = π(r1), π(r2)→ w → r2, violating A2. 2

6.6.2 Space Complexity

Now that the 4-track construction has been proven correct, we consider its
“space complexity.” Using the 3 safe bit construction to implement each of the
four atomic bits, we see that 12 bits suffice for the switch. But we can do better,
because those atomic bits are used in a special way. In particular, since the W
and R bits are used for handshaking, there is exactly one atomic read of W
between an atomic change of W and an atomic change of R (and vice versa).
Hence there is at most one atomic change of W between two consecutive atomic
reads of W (and vice versa). With the trackdisplay bits D0, D1 the situation is
more complicated. When the reader changes groups (say, to 0), and atomically
reads D0, there can be at most one atomic change of D0 before the writer leaves
group 0.

We will show that, because of these properties, we can implement any of the
four atomic bits, call it B, with 2 safe bits B0, B1. The problem with safe bits is
their flickering. If, for example, R was only a safe bit, then while being changed
by the reader, the writer could first see the new value, change groups, then see
the old value and write to the displayed track in the old group. With 2 safe
bits, the following scheme can be applied to alleviate the flickering problem.
We represent the value of atomic bit B as the exclusive-or of 2 safe bit values:
B = B0 ⊕B1. The change of atomic bit B is then replaced by a change of safe
bit Bb, where b is the old value of B. Thus, B0 and B1 are changed alternatingly.
For the purpose of reading B, two local copies b0, b1 of B0 and B1 are kept.
Normally then, an atomic read of B is replaced by a safe read of Bb into bb,
where b = b0 ⊕ b1 is the old value of B. In this case, new-old inversions are
eliminated, since the flickering bit is no longer examined once the new value is
obtained. This procedure suffices for reading W and R, since the handshaking
ensures that each safe bit change is noticed by the other user. It also suffices if
the reader sees the writer in the same group and wants to read the trackdisplay,
because the writer will change the display at most once (before moving to the
other group). If on the other hand the reader sees the writer in the other group,
then any local copies it would have of the trackdisplay bits in that other group
might be out of date. In this case it can simply read both safe bits of that
display one after the other, because again the writer will change the display at
most once before moving to the other group.

The new architecture of the switch is as follows:

Writer →D0,0→ Reader

Writer →D0,1→ Reader group 0 trackdisplay

Writer →D1,0→ Reader
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Writer →D1,1→ Reader group 1 trackdisplay

Writer → W0 → Reader

Writer → W1 → Reader writer’s group

Writer ← R0 ← Reader

Writer ← R1 ← Reader reader’s group

The corresponding protocols are:

WRITER PROTOCOL READER PROTOCOL

1. if R[1-w]==W[1-w] then if W[r]<>R[r] then

2. w := 1-w change R[r]

3. write track T[w,x[w]] r := 1-r

4. change W[1-w] read d[0] := D[r,0]

5. else read d[1] := D[r,1]

6. x[w] := 1-x[w] else read d[d[0]⊕d[1]]
7. write track T[w,x[w]] := D[r,d[0]⊕d[1]]
8. change D[w,1-x[w]] endif

9. endif read track T[r,d[0]⊕d[1]]
The writer’s local variables d0, d1 have been renamed to x0, x1 to emphasize

that xi now represents the eXclusive-or of Di,0 and Di,1. The reader’s local
variable d has been replaced by d0 and d1, where di is meant to hold a copy
of Dr,i. All shared and local variables are initialized to 0 as usual. Because the
switch now consists of eight safe bits, we call it the “Safe Byte Switch.”

We can now state the main theorem:

Theorem 6.8 A single-reader, single-writer b-bits atomic variable can be con-
structed from 4b + 8 safe bits (4 tracks and a safe byte).

We postpone the proof of correctness of the new construction to Section 6.7.3.

6.7 The Atomicity Automaton

In this and the next few sections we discuss the use of machines (computers)
as an aid in designing and verifying atomic variable constructions.

The verification is based on a generic automaton which embodies the three
atomicity properties of system executions (in the single-reader, single-writer
case). Figure 6.2 shows a picture of the automaton. The transitions of this
automaton represent the starts and ends of read and write actions, while the
nodes represent the “atomicity state” of a run on the atomic variable. The
latter corresponds to the set of values that the next-ending read can return
without violating atomicity—its size is shown inside each node.

The nodes can be divided into four groups, depending on whether each user
is idle or busy accessing the variable. When both users are idle, the atomicity
state of the run is fixed by the current value of the variable—this being the
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only value that a newly started read is allowed to return. This explains the
single node in this group.

When the writer is busy and the reader idle, we can distinguish between two
states: either the reader has read the new value that is being written, or it
hasn’t. Hence there are two nodes in this group. In the former case subsequent
read actions must return the same value as the last read action in order to
prevent new-old inversions (condition A1). Hence the set size of one.

When the reader is busy, there are many possible states, depending on the
number of writes that overlap the read. As the nodes progress to the right,
the set of values that the current read action is allowed to return grows. Of
course, while the picture suggests an infinite progression of nodes, its size is
in fact limited by the number of values that the atomic variable can hold (its
domain-size).

In the group where only the reader is busy, there are two start-of-write tran-
sitions emanating downward from each node. As can be deduced from the
resulting set sizes, the upper transition corresponds to the write of a value
already in the set of permitted return values. In this case, while the set size
remains the same, it is now no longer required to map the read action to the
current write action (if the read action decides to return its value). This means
that the next read action will not be able to combine with the current one to
create a new-old inversion.

Alternatively, if the value of the new write is outside the set, then this value is
added to it, but if now the read decides to return the new value, then the atom-
icity state represented by the middle-left node is reached. The other leftward
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transitions from the right-bottom nodes to the left bottom node correspond to
return values written by earlier write actions.

6.7.1 Using the Automaton for Verification of a given Run

For verification, we include in the state information the actual set of values of
completed write actions that are valid return values for the next ending read.
The value returned by a read can then be verified as follows: If it is in the above
set, then we take the leftward transition to the the bottom-left or top-left node
(in case writer is idle), and reduce the set to contain only the value of the last
completed write. Otherwise, if it is the value currently being written by the
writer, then we take the leftward transition to the middle-left node and empty
the set (since now even the value of the last completed write is invalid). If
the returned value satisfies neither of these cases, then the run is non-atomic.
The set is further maintained at the completion of a write, by either adding
the written value to the set if the reader is busy, or changing the set to the
singleton with that value if the reader is idle.

For atomic bit constructions, we know that the values written are alternat-
ingly 1 and 0. This means that the size of the set of permitted return values
is bounded by 2. The size of the atomicity automaton shrinks acccordingly. In
the group with only the reader busy, there are only two essentially different
nodes—either the reader can return the current value of the atomic bit, or it
can return both 0 and 1. In the group where both users are busy, there are
only three nodes. In one, it can return either the old or the new value with two
different transitions. In the second, it can return both 0 and 1 as old values
so there is only one such transition. In the third node, it must return the new
value. Figure 6.3 shows this reduced automaton, with explicit mention of which
value is returned by a read (if the writer is idle, then “new” means “current.”)
There are two nodes from which a single new-labelled transition emanates to
the left. From these nodes atomicity can be violated if the read returns the
other value.

6.7.2 Verifying the Atomic Bit Construction

A program has been written to systematically search all states of the atomic
bit construction. The state information involves the following:

• position of writer in its protocol, i.e., writer state

• position of reader in its protocol, i.e., reader state

• values of the reader’s local variables

• values of the three safe bits

• position in automaton, i.e., atomicity state

We now explain how the safety of the shared bits is modelled. A safe write
is modelled by two separate transitions representing the start and the finish of
that write. A read, on the other hand, is represented by a single transition, as if
it occurred in a single time instant. This can be done for the following reason.
If a read from a safe bit overlaps a write on the same bit, then either 0 or 1 can
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be returned, so the read might as well have occurred completely within that
write. If no write overlaps the read, then the value returned must be that of
the last preceding write, and it clearly doesn’t matter how long the read lasts.

In summary, if a read occurs between two consecutive writes, then there is
a single transition corresponding to the return of the current value, and if it
occurs between the start and finish of a write, then there are two different
transitions, one for each value that can be returned.

This model captures the essence of safe bits. It leads to 3 writer states and
7 reader states. The program starts by putting the initial state in an otherwise
empty set. Then it repeatedly takes an element from the set, and replaces it by
all states that result from the removed one by a single transition and are not yet
in the set. Additionally, the program keeps track of the shortest path from the
initial state to each visited one. If some transition is the return of a value which
is invalid according to the automaton, then the program prints out a description
of the shortest path to the failing state, revealing the shortcomings of the
construction being verified. Otherwise, if the set becomes empty, then some
statistics are printed such as the number of visited states for each combination
of writer state and reader state.

The program helped the design of the atomic bit construction by making
it easy to try out various alternatives, and immediately getting a diagnosis of
possible problems.

6.7.3 Verifying the Safe Byte Switch Construction

Like in the proof of the 4-track construction with the 4 atomic bits, we must
first establish that the new construction is collision free, that is, we must prove
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lemma 6.7 again. For this we again need an invariant to hold under all possible
runs based on a state diagram. In this case however, we cannot assume that
the switch bit accesses can be linearized, since they are only safe. Instead
we adopt the safe bit model of the previous section. This entails redefining
the reader and writer states. Since the simplicity of the invariants depends
rather heavily on the exact form of the protocols. we base the proof on the
following reformulated protocols, that are semantically equivalent to those of
Section 6.6.2 (local assignments have moved and indices changed accordingly):

WRITER PROTOCOL READER PROTOCOL

1. if R[1-w]==W[1-w] then if W[r]<>R[r] then

2. write track T[1-w,x[1-w]] r := 1-r

3. w := 1-w change R[1-r]

4. change W[1-w] read d[0] := D[r,0]

5. else read d[1] := D[r,1]

6. write track T[w,1-x[w]] else read d[d[0]⊕d[1]]
7. x[w] := 1-x[w] := D[r,d[0]⊕d[1]]
8. change D[w,1-x[w]] endif

9. endif read track T[r,d[0]⊕d[1]]

Note that when a safe bit is changed, the local copy already holds the new
value—this is the property that ensures the most simple invariants. We proceed
to enumerate the essential positions of the users in their protocols.

The states of the writer are:

0 idle, i.e., before the safe read of R1−w in line 1

1 between the safe read of R1−w and the safe change of W1−w in line 4, when
it is writing track T1−w,x1−w

2 changing safe bit W1−w in line 4

3 between the safe read of R1−w and the safe change of Dw,1−xw
in line 8,

when it is writing track Tw,1−xw

4 changing safe bit Dw,1−xw
in line 8

Thus, the writer is always moving from state 0 to either state 1 followed by
state 2 or to state 3 followed by state 4 (depending on the outcome of the test),
and then back to state 0.

The states of the reader are:

0 idle, i.e., before the safe read of Wr in line 1

1 between the safe read of Wr and the safe read of Dr,0 in line 4, when it is
changing safe bit R1−r

2 between the safe read of Dr,0 and the safe read of Dr,1 in line 5

3 between the safe read of Wr and the safe read of Dr,d0⊕d1
in line 7

4 reading track Tr,d0⊕d1
in line 9
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Thus the reader is always moving from state 0 to either state 1, followed by
state 2 or to state 3, then on to state 4, and finally back to state 0.

Altogether, there are now 5× 5 = 25 states, which are pictured in figure 6.4,
along with all possible transitions. Each node contains a (possibly empty) set
of formulas, which are to be conjuncted, together with the invariant Ww = Rw

which holds for all nodes. To solve the potential ambiguity of this formula which
arises when the reader is changing Rw (the writer changes W1−w), we make
the following definition:

Definition 6.9 If a safe bit B is being changed then in formulas, B refers to
its new value.

The notation D(i) is used as an abbreviation of di = Dr,i and expresses
that a local display bit of the reader matches the shared one (in the reader’s
group). A greater-than sign (>) is used to denote implication. Starting from
the initial state (0, 0) (both users idle), each invariant can be manually checked
by considering the possible predecessors of a node.

Another state space search program was used to construct this diagram. It’s
state also includes information on the validity of the tracks (relative to the next
end-of-read), as derived from the atomicity automaton. With the help of this
information, the program actually verifies the correctness of the construction. In
this chapter however, we neglect this extra state, since including it would make
the diagram overly complex, making manual inspection practically impossible.

It is now easy to see from the diagram that lemma 6.7 holds. Potential
collisions can occur in states (1, 4) and (3, 4). In the first case, w = r and the
writer writes on a track in group 1−w, so there is no collision. In the second case,
the writer writes on track Tw,1−xw

. If w 6= r, then we are done. Otherwise, the
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reader and writer are in the same group, so w = r, implying d1−xr
= Dr,1−xr

.
Along with d1−xr

= Dr,1−xr
, this leads to xr = Dr,0 ⊕Dr,1 = d0 ⊕ d1, so the

reader is on the other track—no collision.

6.8 Correctness of Safe Byte Switch Construction

Given lemma 6.7, it remains to show that for every run (A,→), there exists
a reading function π such that σ = (A,→, π) satisfies the three atomicity
conditions. We choose the reading function π to map a read action to the write
action that last writes to the track before the read action reads from that track.
As before, this can be viewed as the union of the four reading functions that
make each track atomic, according to lemma 6.7.

We now prove each of the three conditions in turn.
Proof of A0 The reading function is obviously normal by the safety of the

track-bits.
Proof of A1 The proof is by contradiction. Let r1, r2 ∈ R be such that

r1 → r2 are two consecutive read actions and π(r2) → π(r1). Assume that
π(r1) writes on track T0,0, that W0 = W1 = R0 = 0 (using the invariant
Ww = Rw) and that D1,0 = D1,1 = 0 at time f(π(r1)).

4

Consider now the 4 possible tracks that r2 can read from:

T0,0 This contradicts the assumption that π(r2) precedes π(r1), which cannot
be the case if r1 and r2 read from the same track.

T0,1 Note that r2 didn’t change groups thus taking the else branch. Exami-
nation of figure 6.4 reveals that d0 = D0,0 at time f(r1) (Recall that
xi = Di,0 ⊕ Di,1). In order for r2 to read track T0,1, it must have seen
a change in D0,0, which it reads in line 7. But π(r1) ends by changing
either W1 (line 4) or D0,1 (line 8). Hence a write action later than π(r1)
started changing D0,0 before r2 accessed its track, and this write action
must have written to that track, contradicting π(r2)→ π(r1).

T1,0 In this case r2 did change groups, taking the then branch. So in line 1, it
saw W0 set (W0 6= R0 = 0). Given that π(r1) doesn’t change W0, a later
write action must have started changing it, following the writing on track
T1,0. This again contradicts π(r2)→ π(r1).

T1,1 Again r2 changed groups and took the then branch. Also, it saw either
D1,0 or D1,1 set, which requires that a write action later than π(r1) has
already scribbled on track T1,1, contradicting π(r2)→ π(r1).

Proof of A2 The proof is once again by contradiction. Let r ∈ R, w ∈ W
be such that π(r) → w → r. Assume that w writes on track T0,0, that W0 =
W1 = R0 = 0 and that D1,0 = D1,1 = 0 at time f(w).

Consider now the 4 possible tracks that r can read from:

T0,0 This contradicts our choice of the reading function π, since π(r) must
either equal w or succeed it.

4Other cases are analogous.
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T0,1 Since π(r) → w, track T0,1 is not written to between w and its access by
r. Study of the writer protocol then shows that D0,0 and D0,1 remain
constant during that time. Because w and r access different tracks, r did
not read both D0,0 and D0,1—it took the else branch. From figure 6.4 we
obtain that, with r in state 3, dxr

= Dr,xr
. But then either d1−xr

already
equals Dr,1−xr

, or it will do so after the read in line 7, in contradiction
with π(r) 6= w.

T1,0 Since π(r) → w, track T1,0 is not written to between w and its access by r.
Study of the writer protocol now shows that W0 and W1 remain 0 during
that time. But then in line 1, r reads either W1 (and moves to group 0),
or W0, in which case it remains in group 0, a contradiction.

T1,1 Since π(r) → w, track T1,1 is not written to between w and its access by
r. Study of the writer protocol now shows that D1,0 and D1,1 remain 0
during that time. We conclude that r takes the else branch. Again with r
in state 3, we have d0 = dxr

= Dr,xr
= 0. But then either already d1 = 0,

or this will hold after the read in line 7, in contradiction with π(r) 6= w.

2

6.9 Conclusions

We have presented and proven correct the following two constructions:

• an atomic bit from 3 safe bits

• an atomic b-bit variable from 4b + 8 safe bits

The first achieves the optimal number of non-atomic bits needed (optimal space
complexity). The second needs only 2 extra bit accesses in a write action,
and at most 4 extra bit accesses in a read action on the atomic variable (in
addition to the b accesses to the bits on a track), making its time complexity
very near (if not equal) to optimal. The cost for this “speed” is in the space
complexity, which is about a factor 4/3 from optimal, since Peterson showed
the sufficiency of 3 tracks. A main advantage of the 4-track construction as
given here, is its simplicity and transparency—the purpose of the bits in the
architecture and the workings of the protocols can be easily understood. We
have developed a finite state verification methodology for concurrent wait-free
shared variable constructions, whose succesful application provides additional
practical support.
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7
How to Share Concurrent Wait-Free
Variables

7.1 Introduction

In [10] Lamport has shown how an atomic variable—one whose accesses ap-
pear to be indivisible—shared between one writer and one reader, acting asyn-
chronously and without waiting, can be constructed from lower level hardware
rather than just assuming its existence. There arises the question of the con-
struction of multi-user atomic variables of this type (see [20], on which the
current chapter is based). In this chapter we will supply a uniform solution to
such problems, given Lamport’s construction, and derive the implementations
by transformations from the specification.

7.1.1 Informal Problem Statement and Main Result

Usually, with asynchronous readers and writers, atomicity of operations is sim-
ply assumed or enforced by synchronization primitives like semaphores. How-
ever, active serialization of asynchronous concurrent actions always implies
waiting by one action for another. In contrast, our aim is to realize the maxi-
mum amount of parallelism inherent in concurrent systems by avoiding waiting
altogether in our algorithms. In such a setting, serializability is not actively
enforced, rather it follows from the way the executions of the algorithm by the
various processes interact. Any one of the references, say [10] or [20], describes
the problem area in some detail.

The point of departure is the solution of the following problem. (We keep the
discussion informal.) Consider two processors that are asynchronous and do not
wait for one another. A flip-flop is a boolean variable that can be read by one
processor and written by the other. Suppose, one is given atomic flip-flops as
building blocks, and is asked to implement a k-bit atomic variable, that can be
written by one processor and read by the other. Of course, a buffer consisting
of k flip-flops suffices to hold such a value. If, however, the implementation
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allows the reader to read and return the value held by the same buffer that
the writer may simultaneously access for writing, then either the writer or the
reader might do all of its accesses while the other is sleeping halfway. Thus, the
reader would obtain a value consisting of half the new value and half the old one.
Obviously, this violates atomicity. The problem then is to design a protocol that
provides exclusive access to buffers without waiting. Correct implementations
of atomic multi-bit variables from single bits can be found in [15, 10, 26].

These atomic variables serve as the building blocks of our construction of an
n-user variable; a variable shared between n users each of which can atomically
execute both read and write operations.

At the outset we state our main result:

Theorem 7.1 An atomic n-user variable is implemented wait-free from O(n2)
atomic 1-reader 1-writer variables each with O(n) control bits; using O(n) ac-
cesses per Read/Write running in O(1) parallel time.

Our notion of parallel time allows a set of accesses to different variables to
proceed in arbitrary order in one time-unit.

7.1.2 Comparison with Related Work.

Related constructions are given by [17, 9, 3, 13, 7] for the single-reader to multi-
reader case, and by [20, 14, 16, 8] for the multi-reader to multi-writer case. (see
also Section 7.6.) The latter problem is the more difficult one. The solutions in
references [20, 14] are known to be incorrect [16]. There has been no previous
attempt to implement an n-user variable directly from single reader variables.

The algorithm uses O(n) accesses to single-reader variables per operation,
and each single-reader variable stores two copies of the value of the constructed
variable together with O(n) bits of control information. In order to compare our
algorithm to one using n multi-reader variables, the latter could be combined
with n copies of a single-reader to multi-reader algorithm. This doesn’t increase
the number of variables used, since one single-reader register from each process
to each other process is both necessary and sufficient. It does however increase
their size, as well as the number of accesses per operation, by a factor of n.
This should be kept in mind with the comparisons below.

The multi-writer algorithm in [16], which patches [14], uses Θ(n2) accesses
to multi-reader variables per operation. Following [7], recent work [4, 21, 22,
23, 24] provides a general method for replacing unbounded timestamps by
bounded timestamps in concurrent systems of multi-reader variables. The best
construction, [24], uses multi-reader variables of size Θ(n), and Θ(n) accesses
per operation, and can be applied directly to give a multi-writer variable.

A more recent construction than ours, [8], comes up with a direct solution
that is optimal in space (logarithmic control bit complexity) as well as num-
ber of variable accesses per read/write (linear). They do not however achieve
constant parallel time and have a rather more complicated protocol. We be-
lieve the construction presented here is relatively simple and transparent. Both
problems above are solved by simplifications of our main solution.

The basis of our proof-technique was developed in [1]. Our model and termi-
nology is based on [6], which defines and motivates the notion of linearizability.
Bloom [2] presented an elegant 2-writer construction. In [5], Herlihy consid-
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ers more powerful shared objects that have no wait-free implementations from
variables.

7.1.3 Multi-user Variable Construction

In this section we consider the problem of constructing an n-user variable from
single-reader variables and state the correctness condition such a construction
has to satisfy.

Throughout the chapter, the n users are indexed with the set I = {0, . . . , n−
1}. The variable constructed will be called abs (for abstract).

A construction consists of a collection of shared variables Ri,j , i, j ∈ I , and
two procedures, Read and Write. Both procedures have an input parameter i,
which is the index of the executing user, and in addition, Write takes a value
to be written to abs as input. A return statement must end both procedures,
in the case of Read having an argument which is taken to be the value read
from abs.

A procedure contains a declaration of local variables and a body. A local
variable appearing in both procedures can be declared static, which means it
retains its value between procedure invocations. The body is a program frag-
ment comprised of atomic statements. Access to shared variables is naturally
restricted to assignments from Rj,i to local variables and assignments from lo-
cal variables to Ri,j , for any j (recall that i is the index of the executing user).
No other means of inter-process communication is allowed. In particular, no
synchronization primitives can be used. Assignments to and from shared vari-
ables are called writes and reads respectively, always in lower case. The space
complexity of a construction is the maximum size, in bits, of a shared variable.

A loop of the type for j ∈ I signifies a parallel loop whose iterations1 can be
executed in arbitrary order. Shared variables accessed in different iterations of
a parallel loop must be disjoint since a user can only execute one operation at
a time on a given shared variable. As the time complexity of the Read or Write
procedure we take the maximum number of shared variable accesses outside
parallel loops plus for each such loop the maximum number of shared variable
accesses in a single iteration of that loop.

A construction must satisfy the following constraint.

Wait-Freeness Each procedure must be free from unbounded loops.

Given a construction, we are interested in properties of its executions, which
the following notions help formulate. A state is a configuration of the construc-
tion, comprising values of all shared and local variables, as well as program
counters. Note that we need a somewhat liberal notion of program counter
to characterize the execution of a parallel loop. In between invocations of the
Read and Write procedure, a user is said to be idle, and its program counter
has the value ‘idle’, One state is designated as initial state. All users must be
idle in this state.

A state t is an immediate successor of a state s if t can be reached from s
through the execution of a procedure statement by some user in accordance

1This is a slight abuse of the term, since the word iteration suggests sequential
behaviour.



7.1. Introduction 91

with its program counter. Recall that n denotes the number of users of the
constructed variable abs. A state has at least n immediate successors: If a user
is idle, it can invoke either the Read or Write procedure. And if it is within one
of these procedures, there is at least one atomic statement to be executed next
(possibly more during the execution of a parallel loop).

A history of the construction is a finite or infinite sequence of states t0, t1, t2, . . .
such that t0 is the initial state and ti+1 is an immediate successor of ti. Tran-
sitions between successive states are called the events of a history. With each
event is associated the index of the executing user, the relevant procedure
statement, and the values manipulated by the execution of the statement.

An event a precedes an event b in history h, a ≺h b, if a occurs before b in h.
The subscript h is omitted when clear from context. Call a finite set of events
of a history an event-set. Then we similarly say that an event-set a precedes
an event-set b in a history, a ≺h b, when each event in a occurs before all those
in b. The relation ≺h on event-sets constitutes what is known as an interval
order. That is, a partial order satisfying the interval axiom a ≺ b∧ c ≺ d ∧ c 6≺
b ⇒ a ≺ d. This implication can be seen to hold by considering the last event
of c and the earliest event of b. See [10] for an extensive discussion on models
of time.

Of particular interest are the sets consisting of all events of a single procedure
invocation, which we call an operation. An operation is either a Read operation
or a Write operation. It is complete if it includes the execution of the final
return statement of the procedure. Otherwise it is said to be pending. A history
is complete if all its operations are complete. Note that in the final state of a
complete finite history, all users are idle. The value of an operation is the value
written to abs in the case of a Write, or the value read from abs in the case
of a Read.

The following crucial definition expresses the idea that the operations in a
history appear to take place instantaneously somewhere during their execution
interval. A more general version of this is presented and motivated in [6]. To
avoid special cases, we introduce the notion of a proper history as one that
starts with an initializing Write operation that precedes all other operations.

Linearizability A complete proper history h is linearizable if the partial order
≺h on the set of operations can be extended to a total order which obeys
the semantics of a variable. That is, each Read operations returns the
value written by that Write operation which last precedes it in the total
order.

A construction is correct if it satisfies Wait-Freeness and all its complete
proper histories are linearizable.

7.1.4 The Tag Function

While the definition of linearizability is quite clear, it is convenient to transform
it into an equivalent specification from which the first algorithm can be directly
derived. The idea behind the following lemma was first expressed by Lamport
in Proposition 3 of [10], for the case of a single writer. In [17], the equivalent
conditions given by Lamport’s proposition are in fact taken as the definition
of linearizability (often called atomicity in the register construction literature).
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The Atomicity Criterion of [1] is the first generalization of Lamport’s proposi-
tion to the case of multiple readers. A further generalization appears in [18] for
the case of a variable having several fields which can be written independently.

Lemma 7.2 A complete proper history h is linearizable iff there exist a function
mapping each operation in h to a rational number, called its tag, such that the
following 3 conditions are satisfied:

Uniqueness different Write operations have different tags.

Integrity for each Read operation there exists a Write operation with the same
tag and value, that it doesn’t precede.

Precedence if one operation precedes another, then the tag of the latter is at
least that of the former.

Proof.⇒ Let a complete proper history h be linearizable. Then there is some
total order < extending ≺h. Assign to each operation a tag which is the number
of Write operations preceding it in <. This clearly satisfies Uniqueness. For any
Read operation R, the Write operation W that precedes it last in < has the
same tag. Also, because < obeys the semantics of a variable, W and R have the
same value. From the facts that < extends ≺h, W < R, and < is acyclic, we
conclude that ¬R ≺h W . So Integrity is satisfied as well. Finally, for operations
A ≺h B, we necessarily have A < B and thus the tag of B is at least that of
A.
⇐ Suppose we are given a complete proper history h and a function tag

satisfying the three conditions. Using Uniqueness, totally order the Write op-
erations according to their tags. Next, we insert all Read operations in this
total order: for each Write operation in turn, insert immediately after it those
Read operations having the same tag, in any order extending ≺h. By Integrity,
the result is a total order < on all operations, that obeys the semantics of a
variable. It remains to show that < extends ≺h. Suppose A ≺h B are two oper-
ations. By Precedence, A’s tag is at most that of B. If A’s tag is less than B’s,
or A and B are Read operations with the same tag, then A < B follows from
the construction of <. In the remaining case A and B have equal tags and at
least one of them is a Write operation. By Uniqueness, one is a Read operation,
and the other is the unique Write operation with the same tag. Finally, we use
Integrity to conclude that A is the Write, and B the Read operation. Thus,
A < B follows again from the construction of <. 2

7.2 The Basic Unbounded Construction

Figure 7.1 shows Construction 0, which is the unbounded solution of [20]. We
present it here as an aid in understanding Construction 1, and give only a
sketchy proof.

The Write and Read procedures are given after the declaration of the type
of the shared variables Ri,j . The initial state of the construction has all Ri,j

containing (0, 0).
The tag function called for in lemma 7.2 is built right in to this construction.

Each operation starts by collecting value-tag pairs from all users. By executing
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type I : 0..n− 1
shared : record

value : abstype
tag : integer

end

procedure Write(i, v)
var j : I

t : integer
from : array[0..n− 1] of shared

begin
for j ∈ I do from [j] := Rj,i

select t such that (∀j : t > from [j].tag) ∧ t ≡ i (mod n)
from [i] := (v, t)
for j ∈ I do Ri,j := from [i]

end

procedure Read(i)
var j,max : I

from : array[0..n− 1] of shared
begin

for j ∈ I do from [j] := Rj,i

select max such that ∀j : from [max ].tag ≥ from [j].tag
from [i] := from [max ]
for j ∈ I do Ri,j := from [i]
return from [i].value

end

FIGURE 7.1. Construction 0
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line 3 of either procedure, the operation picks a value and tag for itself. It
finishes after distributing this pair to all users. It is not hard to see that the three
conditions of lemma 7.2 are satisfied for any complete proper history. Integrity
and Precedence are straightforward to check. Uniqueness follows since tags of
Write operations of different users are not congruent modulo n, while tags of
Write operations of a single user strictly increase (based on the observation
that each Ri,i.tag is nondecreasing).

7.3 Solution Method

The only problem with Construction 0 is that the number of tags is infinite.
With a finite number of tags comes the necessity to re-use tags and hence to
distinguish old tags from new ones.

In Construction 1, we introduce a shooting mechanism to provide aging in-
formation in addition to the tags. At the start of an operation, a user sets
up a ‘target’ that gets ‘shot at’ by Write operations. A tag can be considered
old once its associated target has received sufficiently many shots. The shoot-
ing mechanism also serves another purpose, which is that of approximating a
snap-shot, i.e. an instantaneous picture of a set of shared variables. In Con-
struction 0, an operation collects information on values and tags of all users
by reading their variables one after another, in arbitrary order (the first line in
either procedure). Since these read events are interleaved with events of other
users, in particular write events, the picture it gets this way can be very dis-
torted. In Construction 1, with the additional information to collect, there is
a need to limit the amount of distortion. If, after the information-collecting
period, the target that was set up has received sufficiently many shots, then
the operation will abort, i.e. terminate without executing the remainder of the
procedure. Aborting operations do not change or make use of any tags and thus
have very limited interaction with non-aborting operations. The latter in turn
will have got a good, if not instantaneous, picture of the shared state. This in
principle allows them to distinguish old tags by inspection of the associated tar-
gets. This distinction is however not yet made in Construction 1. With all the
added unbounded counters, Construction 1 merely paves the way to our final,
bounded, solution. In Section 7.3.1, we discuss Construction 1 and in particular
the shooting mechanism, in some more detail. Section 7.3.2 introduces some
notational conventions. The correctness proof is given in Section 7.3.3. Finally,
Section 7.4 shows how Construction 1 can be changed into an equivalent one
using only bounded counters.

7.3.1 Construction 1

Figure 7.2 shows the data-structure and procedures of Construction 1. The
Write procedure turns out to be an extension of the Read procedure which is
why the two are more conveniently shown together. The line indicated ‘(Read
only)’ is unique to the Read procedure, making the remaining lines effectively
unique to the Write procedure. The initial state of Construction 1 has 0 in all
fields of all shared and static variables.

Let’s look at the data structures used in the construction. The value and



7.3. Solution Method 95

type I : 0..n− 1
shared : record

value ,prev : abstype
tag : integer
ss : 0..1
shoot ,heal : array[0..1][0..n− 1] of integer

end

procedure Read(i) / Write(i, v)
var j : I

t : integer
s : 0..1
from ,tmp : array[0..n− 1] of shared
static me : shared

begin
s := 1−me .ss

s: for j ∈ I do me .heal [s][j] := Rj,i.shoot [s][i]
h: for j ∈ I do Ri,j := me
r: for j ∈ I do from [j] := Rj,i

t: for j ∈ I do tmp[j] := Rj,i

if ∃j ∈ I : tmp[j].shoot [s][i]−me.heal [s][j] ≥ 3
then return tmp[j].prev
select max such that ∀j : from [max ].tag ≥ from [j].tag
me.prev ,me.value ,me.tag ,me.ss :=

me .value, from [max ].value , from [max ].tag , s
p: for j ∈ I do Ri,j := me

(Read only) return me.value
for j ∈ I, s ∈ {0..1} do

if me.shoot [s][j]− from [j].heal [s][i] < 6
then me .shoot [s][j]+ := 1

select t such that t−me .tag ∈ {1, . . . , n} ∧ t ≡ i (mod n)
me.value ,me.tag := v, t

w: for j ∈ I do Ri,j := me
end

FIGURE 7.2. Construction 1
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tag fields have exactly the same function as in Construction 0. The prev field
is used to remember values of former operations, which are used by aborting
Read operations. Two sets of heal counters, heal [0][0..n−1] and heal [1][0..n−1],
are used to hold targets. The ss (shoot-selector) field selects which of the two
sets holds the target associated with the current value-tag pair. A second set
is needed since new operations must set up a target before they can compute a
new tag. Together with the heal counters, the shot counters, shoot [0..1][0..n−1],
implement the shooting mechanism. User j shoots at a target heal [s][0..n− 1]
of user k by making his counter shoot [s][k] larger than the counter heal [s][j] of
user k, up to a maximum of 6.

Now let’s consider the procedures. Note that the lines are no longer num-
bered. Instead, the lines involving shared variable access are identified by one
of the characters s,h,r,t,p and w, which are mnemonic shorthands for setup,
heal, read, test, propagate and write, respectively.

At the start of an operation, call it a, user i sets up a new target in the
available heal counter set (1 − me.ss) by catching up with each user’s shot
counter. It then writes out the target in line h so that the other users can start
shooting it. After collecting every one’s data in line r, it proceeds to test how
many times it’s target has been shot. More precisely, if any user has increased
its shot counter at least 3 times since it was previously read in line s, then a
will abort. The j in the return statement is meant to be any j satisfying the
condition of the test, but could be chosen as the minimal index for the sake
of definiteness. It can be shown that a completely ‘contains’ an operation b of
user j with the value tmp[j].prev . Thus, a can be imagined to have occurred
right before or after b in a linearization, depending on whether it’s a Write or
Read operation. If no user shot the target 3 times, then user i sets max to an
index of the largest visible tag. It then saves the old value in prev , changes its
value and tag to that of max , and associates its target with the new value-tag
pair. In line p, record me is written out. The purpose of the Write operations
propagating the value-tag pair of max is to ensure that the maximum tag visible
to one user is at most n larger than the maximum tag visible to any other user.
The Read procedure ends after line p by returning the value copied from max .

The Write procedure continues by shooting all visible targets, that is, increas-
ing all its shot counters that are not already 6 ahead of their corresponding
heal counter. User i next chooses a tag unique to it which is larger than all
visible ones. This is paired with the argument v the Write procedure, and all
is written out in line w.

7.3.2 Notational Conventions

The following notions are used in the proof. Where necessary, assume a fixed,
but arbitrary history. The m’th non-aborting operation of user i is denoted Nm

i .
If a = Nm

i then a+r denotes Nm+r
i , i.e. the r-th next non-aborting operation

by user i following a, assuming it exists. If a = Nm
i then a−r denotes Nm−r

i ,
i.e. the r-th previous non-aborting operation by user i preceding a. Use of this
notation depends on the assumption that r < m. Since all shot counters are
initialized to 0, and increase at most by one per non-aborting Write operation,
the value assigned by an operation a to one of its shot counters provides a lower
bound on m. We’ll use the notation only where it is justified on these grounds.
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The events of an operation a involving shared variable access constitute up
to 6 events-sets, or phases:

a.s ≺ a.h ≺ a.r ≺ a.t ≺ a.p ≺ a.w,

in accordance with the labelled lines of the Read and Write procedure. Abort-
ing operations consist of only the first 3 phases, while a non-aborting Read
operation has the first 5. The n events in a phase a.c (c one of s,h,r,t,p or w)
are denoted a.cj with j ∈ I , and are called c-events.

For a shared variable read event e, define p-Last(e) to be the operation
containing the last p-event preceding e that accesses the same shared variable.
If such an event does not exist, then p-Last(e) is defined to be the non-operation
⊥.

For a an operation and exp an expression consisting of (symbolic or explicit)
constants and local variables. define exp@a as the final value of that expression
in the procedure invocation corresponding to a. Array indices i, j, k, s, t refer
to symbolic constants defined in the context, not to the local variables. Define

value@⊥ = prev@⊥ = tag@⊥ = ss@⊥ = shoot [][]@⊥ = heal [][]@⊥ = 0,

in accordance with the initialization of the construction. Define exp@a.c (c one
of s,h,r,t,p or w) as the value of the expression exp after completion of line c
of the procedure invocation corresponding to a. By convention, the prefix me .
is omitted when exp is a field of me .

7.3.3 Correctness of Construction 1

Construction 1 clearly satisfies Wait-Freeness as all loops range over I =
{0, . . . , n−1}. To prove correctness, we must therefore show that each complete
proper history is linearizable. The proof is based on Lemma 7.2. First we need
some preparatory claims.

Claim 7.3 All shared tag, heal and shot counters are nondecreasing in the
course of a history.

Proof. A shared variable Ri,j is changed only when me is written to it, in an
h-, p-, or w-event of user i, so a nondecreasing counter in the static local variable
me of user i implies a corresponding nondecreasing counter in Ri,j for all j ∈ I .
The me .shoot counters are clearly nondecreasing and therefore so are the shared
shot counters. Each heal counter me .heal [s][j] of user i is only changed by
assignment from Rj,i.shoot [s][i] and is thus also nondecreasing. It remains to
show that me.tag is non-decreasing. Consider the new tag from [max ].tag that
is assigned to me.tag prior to line p. By the selection of max , this is at least
from [i].tag which by lines h,r is just a copy of me.tag . Thus, me.tag doesn’t
decrease in this assignment. In the other assignment, prior to line w, me.tag
only increases. 2

Corollary 7.4 If event e assigns ve to a shared tag, heal, or shot counter,
and event f assigns vf from the same shared counter, then e ≺ f ⇒ vf ≥ ve

and vf < ve ⇒ f ≺ e.
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Corollary 7.5 Let a ≺ b be non-aborting operations by users i and j respec-
tively. If b is a Read operation, then

tag@b ≥ tag@a,

and if b is a Write operation, then

tag@b ≥ tag@a + 1.

Proof. By the selection of max , a ≺ b, and corollary 7.4, from [max ].tag@b.p ≥
from [i].tag@b.r ≥ tag@a. For b a non-aborting Read operation, tag@b = from [max ].tag@b.p.
For b a non-aborting Write operation, tag@b ≥ tag@b.p+1 = from [max ].tag@b.p+
1. 2

Claim 7.6 The difference me.shoot [s][j]−from[j].heal [s][i] as well as tmp[j].shoot [s][i]−
me.heal [s][j] between corresponding shot and heal counter as computed in the
Read and Write procedure is between 0 and 6 (inclusive).

Proof. Using the 0 initialization of the construction, claim 7.3, and the way
shot counters are increased, differences less than 0 or greater than 6 are easily
shown to lead to a contradiction. 2

Claim 7.7 Let a be an operation by user i, b = p-Last(a.tj), and c = p-Last(a.rj).
Let s = from [j].ss@a.r. Then

1. tmp[j].prev@a.t = prev@b, s = ss@c

2. if c = ⊥ then from [j].tag@a.r = 0
else tag@c.p ≤ from [j].tag@a.r ≤ tag@c

3. for all k ∈ I , from [j].heal [s][k]@a.r = heal [s][k]@c

4. for all k ∈ I, z ∈ {0, 1}, if c = ⊥ then from [j].shoot [z][k]@a.r = 0
else shoot [z][k]@c.p ≤ from [j].shoot [z][k]@a.r ≤ shoot [z][k]@c

Proof.

1. Only the p-events of user j change Rj,i.prev and Rj,i.ss .

2. In case c = ⊥, no tag has overwritten the initial 0. In case c 6= ⊥, the first
inequality follows directly from the definition of c and corollary 7.4. For
the second, note that after c, the value of Rj,i.tag remains tag@c until
c+1.pi (if any), which by definition of c doesn’t precede a.rj .

3. After c.pi (or from the start of history if c = ⊥), the value of ss in
user j’s me remains s at least until c+1.p (if any), hence only its heal [1−s]
counters are changed at least until a new operation starts after c+1.

4. Analogous to item 2.

2
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Claim 7.8 Let a, b = a+1 be two non-aborting operations by user i.

1. prev@b = value@a

2. ∀j ∈ I, s ∈ {0, 1} : shoot [s][j]@b ≤ shoot [s][j]@a + 1

3. If a and b are Write operations then tag@b ≥ tag@a + n.

Proof.

1. Since b doesn’t abort, and aborting operations don’t change me .value ,
prev@b = value@b.s = value@a.

2. Similarly.

3. Since tag@b ≡ tag@a ≡ i (mod n), their difference is a multiple of n,
and by corollary 7.5, it is positive.

2

Claim 7.9 Let a be an aborting operation by user i, and let j be the index
for which the abortion condition holds. Then there exists a non-aborting Write
operation b by user j, such that

a.sj ≺ b ≺ a.tj ∧ tmp[j].prev@a = value@b.

Proof. Let c = p-Last(a.tj), b = c−1, and d = c−2 (recall Section 7.3.2 on
notation). Then d ≺ b ≺ c.p ≺ a.tj and by claims 7.7,7.8, tmp[j].prev@a =
prev@c = value@b. Also, with s = 1 − ss@a, by abortion of a, claims 7.7 and
7.8,

heal [s][j]@a + 3 ≤ tmp[j].shoot [s][i]@a ≤ shoot [s][i]@c ≤ shoot [s][i]@d + 2.

This shows that heal [s][j]@a < shoot [s][i]@d, hence not d ≺ a.sj . Combined
with d ≺ b this yields a.sj ≺ b. 2

The following claim will be used in later sections.

Claim 7.10 If a is an operation a by user i, and w1, w2, w3 are non-aborting
Write operations by user k, such that

a.hk ≺ w1.ri ≺ w2 ≺ w3.wi ≺ a.tk,

then a aborts.

Proof. Let s = ss@a. Claim 7.6 and the assumption of the claim give

shoot [s][i]@w1.r ≥ from [i].heal [s][k]@w1.r ≥ heal [s][k]@a.

According to the shooting mechanism, induction on m shows that shoot [s][i]@wm ≥
heal [s][k]@a + min(m, 6). Since w3.wi ≺ a.tk, corollary 7.4 implies

tmp[k].shoot [s][i]@a.t ≥ shoot [s][i]@w3 ≥ heal [s][k]@a + 3,

hence a aborts. 2
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Lemma 7.11 Any complete proper history h of Construction 1 is linearizable.

Proof. The proof is based on the tag lemma. We show that there is a function
τ(), mapping each operation in h to a rational number, that satisfies Unique-
ness, Integrity, and Precedence. Let a be an operation by user i. If a doesn’t
abort, then simply set τ(a) = tag@a. Otherwise, if a aborts, let b be the op-
eration given by claim 7.9. Now set τ(a) = tag@b if a is a Read operation, or
set τ(a) = tag@b− εa, if a is a Write operation, where 0 < εa < 1 is a fraction
unique to a.

Uniqueness Let a and b be different Writes operations by users i and j re-
spectively. If either aborts, then its tag has a unique fractional part and is
therefore different from the other operation’s tag. Suppose neither aborts.
Then τ(a) = tag@a = i (mod n), and τ(b) = tag@b = j (mod n). If
i 6= j then Uniqueness follows immediately. In case i = j, one Write oper-
ation must precede the other, and Uniqueness follows from corollary 7.5.

Integrity For aborting Read operations, Integrity follows from claim 7.9. The
value-tag pair that a non-aborting Read operation a copies must originate
from a non-aborting Write operation b. Clearly, ¬(a ≺ b). Combined with
the definition of τ , this proves Integrity.

Precedence Consider two operations a ≺ b. We must show that τ(a) ≤ τ(b).
If a aborts, then by claim 7.9 and definition of τ , there exists a j and a
non-aborting operation a′ such that a′ ≺ a.tj ≺ b and τ(a) ≤ τ(a′), in
which case it would suffice to show Precedence for a′ ≺ b. So without loss
of generality we can assume that a doesn’t abort. If b doesn’t abort, then
Precedence follows from corollary 7.5. Suppose b aborts. By claim 7.9,
there exist a j and a non-aborting operation b′ such that a ≺ b.sj ≺ b′.
Then we use the definition of τ and corollary 7.5 to show Precedence: If
b is a Write operation then τ(b) = tag@b′ − εb ≥ tag@a + 1− εb > τ(a).
If b is a Read operation then τ(b) = tag@b′ ≥ tag@a = τ(a).

2

7.4 Bounding the counters

Having proven Construction 1 correct, we will make a correctness preserving
transformation that renders all variables bounded. The transformation is based
on 3 key lemmas. The first formalizes the idea that a tag, whose target is seen
to have been shot sufficiently many times, can be considered old, and ignored
in the selection of a maximum tag. The second shows that the remaining, ‘live’,
tags are in a bounded range, which is the basis for bounding the tags. Finally,
the third shows that the perceived number of times a target is shot is bounded
both from below and above, which is the basis for bounding the heal and shot
counters.
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7.4.1 Old tags

Lemma 7.12 Let a be a non-aborting operation by user i. Let j, k ∈ I, and
s = from [j].ss@a.r. If

from [k].shoot [s][j]@a.r− from [j].heal [s][k]@a.r ≥ 6

(a sees 6 shots by k on j’s target), then

from [k].tag@a.r > from [j].tag@a.r

Proof. Let b = p-Last(a.rj) and c = p-Last(a.rk). Using in succession claim 7.7,
the assumption of the claim, and claim 7.7 again:

shoot [s][j]@c ≥ from [k].shoot [s][j]@a.r ≥
from [j].heal [s][k]@a.r + 6 = heal [s][k]@b + 6

This shows the existence of

w3 ≺ w4 ≺ w5 ≺ w6.wi ≺ a.rk,

where wm, 3 ≤ m ≤ 6 is the first non-aborting Write operation by user k such
that

shoot [s][j]@wm = heal [s][k]@b + m.

By corollary 7.4, claim 7.8, and the tag choice in Construction 1,

from [k].tag@a.r ≥ tag@w6 ≥
tag@w4 + 2n ≥ from [max ].tag@w4.p + 2n + 1.

If b = ⊥, then from [j].tag@a.r = 0 and the lemma follows immediately. Other-
wise, by claim 7.7 and the tag choice in Construction 1,

from [j].tag@a.r ≤ tag@b ≤ from [max ].tag@b.p + n.

Thus, to prove the lemma it suffices to show that

from[max ].tag@w4.p + 2n + 1 > from [max ].tag@b.p + n. (7.1)

Since by its definition, b doesn’t abort, corollary 7.4 implies b.r ≺ b.tk ≺
w3.wj ≺ w4. Let Write operation w be the originator of the tag from [max ].tag@b.p.
We have ¬(b.r ≺ w.w). Since b.r ≺ w4 and w.p ≺ w.w, it must therefore be
that w.p ≺ w4. This shows

from [max ].tag@w4.p ≥ tag@w.p ≥ tag@w − n = from [max ].tag@b− n,

which immediately implies 7.1. 2

Definition 7.13 In the context of a Read or Write procedure, define

alive(j) ≡ (∀k ∈ I : from [k].shoot [s][j]− from [j].heal [s][k] < 6),

where s = from [j].ss

Corollary 7.14 For any non-aborting operation a, alive(max )@a.p.

This shows that the choice of max can be restricted to those j ∈ I for which
alive(j) holds.



7.4. Bounding the counters 102

7.4.2 Range of alive tags

The parameter m in the next lemma serves to prepare for a later simplification
of the construction, for the case of only one writer.

Lemma 7.15 Let a be a non-aborting operation by user i. Let j ∈ I and s =
from [j].ss@a.r. Let 1 ≤ m ≤ n be the number of users with Write operations.
If alive(j)@a.r then

from [max ].tag@a.p− from [j].tag@a.p ≤ 10mn

Proof. Assume, to the contrary, that from [max ].tag@a.p > from [j].tag@a.p+
10mn. Let W be the set of all non-aborting Write operations w such that
tag@w > from[j].tag@a.p∧¬(a.r ≺ w). Since a reads a tag which is more than
10mn greater than j’s, and new tags are chosen in increments of at most n, we
must have |W | > 10m. Therefore, some user, say k, has at least 11 operations,
say w0 ≺ w1 ≺ · · · ≺ w10, in W .

We claim that

from [j].heal [s][k]@w1 ≥ heal [s][k]@b. (7.2)

Otherwise corollary 7.4 gives b 6= ⊥ and w0 ≺ w1.rj ≺ b.hk ≺ b.rk, from which
corollary 7.4 and claim 7.7 imply tag@w0 ≤ from [k].tag@b.r ≤ tag@b.p ≤
from [j].tag@a.p, contradictory to the definition of w0 ∈ W . As the proof of
claim 7.10 shows, 7.2 implies shoot [s][j]@w6 ≥ heal [s][k]@b + 6. On the other
hand, the assumption alive(j)@a.r and claim 7.7 give from[k].shoot [s][j]@a.r <
from [j].heal [s][k]@a.r+6 = heal [s][k]@b+6. Together, using corollary 7.4, these
inequalities show that

a.hk ≺ a.rk ≺ w6.wi ≺ w7.ri.

Since a doesn’t abort, claim 7.10 implies

a.r ≺ a.tk ≺ w9.wi ≺ w10,

in contradiction to the definition of w10 ∈W . 2

The lemma shows that all alive tags are from 10mn to 0 less than the maxi-
mum. The following is an easy consequence.

Corollary 7.16 Let a be a non-aborting operation by user i. Let 1 ≤ m ≤ n
be the number of users with Write operations. Let j, k ∈ I such that alive(j)@a.r∧
alive(k)@a.r. Then

−10mn ≤ from [k].tag − from [j].tag ≤ 10mn.

7.4.3 Bounds on perceived shots

Lemma 7.17 Let a be a non-aborting operation by user i. Let j, k ∈ I, and
s = from [j].ss@a.r. Then

−4 ≤ from [k].shoot [s][j]@a.r− from [j].heal [s][k]@a.r ≤ 9
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Proof. Assume, to the contrary, that the difference is outside {−4, . . . , 9}.
We will reach the required contradiction by showing that the conditions of
claim 7.10 hold, implying that a aborts.

Let b = p-Last(a.rj) and c = p-Last(a.rk). In the first case, assume the
difference is under −4. Then by claim 7.7, s = ss@b and

heal [s][k]@b = from [j].heal [s][k]@a.r ≥ from [k].shoot [s][j]@a.r + 5.

So b 6= ⊥ and b.sk read a shot counter from user k that’s at least 5 greater than
what a read in a.rk. This shows the existence of

a.rk ≺ w1.wi ≺ w2 ≺ w3 ≺ w4 ≺ w5.wj ≺ b.sk,

where wm, 1 ≤ m ≤ 5 is the first non-aborting write action by user k such that

shoot [s][j]@wm = from[k].shoot [s][j]@a.r + m.

Consequently, the conditions of claim 7.10 hold:

a.hk ≺ a.rk ≺ w2 ≺ w4 ≺ b.sk ≺ b.pi ≺ a.rj ≺ a.tk.

This proves the first inequality of the lemma.
In the other case, assume the difference is over 9. Then by claim 7.7

shoot [s][j]@c ≥ from [k].shoot [s][j]@a.r ≥

from [j].heal [s][k]@a.r + 10 = heal [s][k]@b + 10.

This shows the existence of

w7 ≺ w8 ≺ w9 ≺ w10.wi ≺ a.rk,

where wm, 7 ≤ m ≤ 10 is the first non-aborting Write operation by user k such
that

shoot [s][j]@wm = heal [s][k]@b + m.

Claim 7.6 shows that

from [j].heal [s][k]@w7.r ≥ shoot [s][j]@w7 − 6 = heal [s][k]@b + 1.

As the proof of item 3 of claim 7.7 shows, this can only be if d ≺ w7.rj , with d
being N1

j in case b = ⊥ and b+1 otherwise.
Thus, using b’s definition,

a.hk ≺ a.rj ≺ d.pi ≺ w7.rj ≺ w8.

Again the conditions of claim 7.10 hold. This proves the second inequality of
the lemma. 2
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7.4.4 Equivalence with bounded counters

For notational convenience, we introduce three binary operators 	, ⊕ and �:

Definition 7.18 For any integers a, b, a 	 b, a ⊕ b and a � b are uniquely
defined by the equations

−4 ≤ a	 b < 10 ∧ a	 b ≡ a− b (mod 14)
−4 ≤ a⊕ b < 10 ∧ a⊕ b ≡ a + b (mod 14)

−10n2 ≤ a� b < 10n2 + n ∧ a� b ≡ a− b (mod 20n2 + n)

By Corollary 7.14 and a simple reordering of terms, the assignment

select max such that ∀j : from [max ].tag ≥ from [j].tag

of Construction 1 is equivalent to:

select max ∈ A such that ∀j ∈ A : from [max ].tag − from [j].tag ≥ 0
where A = {j ∈ I : alive(j)}

which, by corollary 7.16 and lemma 7.17, is in turn equivalent to

select max ∈ A such that ∀j ∈ A : from [max ].tag � from [j].tag ≥ 0
where A = {j ∈ I : ∀k ∈ I : from [k].shoot [z][j]	 from [j].heal [z][k] < 6

where z = from [j].ss}

Furthermore, the subtractions referred to in claim 7.6 are also equivalent to 	.
Let Construction 2 be the result of replacing these 3 program fragments (se-

lection of max and shot-heal differences) by their equivalent parts. Obviously,
Construction 2 is also correct.

We next consider our bounded solution, Construction 3, shown in figure 7.3.
It is identical to Construction 2 except for the type of tags and shot/heal
counters, and the way they are increased. Note that in the 2nd to last line,
the selection of t is possible (and unique) because 20n2 + n is a multiple of n.
The initial state of Construction 3 has 0 in all fields of all shared and static
variables, like Constructions 1 and 2.

To prove Construction 3 correct, it suffices to show that any of its histories,
say h3 = S0, S1, S2, . . ., is equivalent to a history h2 = T0, T1, T2, . . . of Con-
struction 2, in the sense that corresponding states S and T are the same, up to
congruence of tags and shot/heal counters. That is, when tag3 is the value of
some local or shared variable of type tagtype in state Sr, and tag2 is the value of
that same variable in state Tr, then we want tag3 ≡ tag2 (mod 20n2+n). Sim-
ilarly, when shot3 is the value of some local or shared variable of type shottype
in state Sr, and shot2 is the value of that same variable in state Tr, then we
want shot3 ≡ shot2 (mod 14). We prove the existence of h2 by induction on
the length of h3.

If h3 consists of only the initial state S0 then it is clearly equivalent to the
h2 consisting only of the initial state T0 of Construction 2. Now suppose h3 =
S0, S1, . . . , Sr, Sr+1 is a history of Construction 3, and the one event shorter
history S0, S1, . . . , Sr is equivalent to a history T0, T1, . . . , Tr of Construction 2.
In particular, Sr is the same as Tr, up to congruence. Let Tr+1 be the state
reached from Tr by execution of the same procedure statement by the same
user as in the event Sr → Sr+1. One can check in a straightforward manner,
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by considering all procedure statements, that Tr+1 must then be the same as
Tr+1, up to congruence. The test for abortion comes out the same because of
congruence. Similarly, the same choices of max are available in Tr as in Sr.
The increment of me.shoot [s][j] in the 3rd to last line preserves congruence,
as does the selection of t in the next line. Other statements are even more
straightforward.

This completes the induction argument and shows

Theorem 7.19 Any complete proper history of Construction 3 is linearizable.

7.5 Complexity

First let’s consider the time complexity of Construction 3. Since all shared
variable accesses occur in phases, each of which consists of n reads or writes in
parallel, the time complexity of both the Read and Write operation is bounded
by the number of phases, which is clearly O(1).

Next consider the space complexity of Construction 3, which is the size in
bits of the type shared . This can be split into two parts: the data size and the
control size.

The data size is 2× sizeof (abs). This factor 2 overhead can be traced back
to the use of single reader shared variables in our construction. In fact, the
version of Construction 3 using multi-reader variables can be easily modified
to do away with the prev data field (as sketched in the next section).

The control size concerns all the other fields in the shared variables. Note
first that from the values read from Rj,i, user i never uses any of the counters
heal [1−ss][k], where k 6= i. Thus, in addition to the single counter heal [1−ss][i],
only a single heal counter set needs to be stored in Rj,i, of which the missing
first index is understood to be Rj,i.ss . This leads to a control size of

dlog 20n2 + ne+ 1 + (3n + 1)dlog 14e ≤ 12n + o(n).

7.6 Subproblems

The final construction presents a solution to the problem of implementing a
multi-user variable from single-reader variables. Many other papers have con-
sidered the intermediate level of a single-writer multi-reader variable, which
splits the problem into two subproblems. We show that projections of our con-
struction yield solutions to those two subproblems with competitive complexity
measures.

The first projection is obtained by collapsing the row of shared variables
Ri,0, . . . , Ri,n−1 into a single multi-reader variable Ri. Each loop

for j ∈ I do Ri,j := me

is replaced by the single write

Ri := me
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type I : 0..n− 1
tagtype : −10n2..10n2 + n− 1
shottype : −4..9
shared : record

value ,prev : abstype
tag : tagtype
ss : 0..1
shoot ,heal : array[0..1][0..n− 1] of shottype

end

procedure Read(i) / Write(i, v)
var j : I

t : tagtype
s : 0..1
from ,tmp : array[0..n− 1] of shared
static me : shared

begin
s := 1−me .ss
for j ∈ I do me .heal [s][j] := Rj,i.shoot [s][i]
for j ∈ I do Ri,j := me
for j ∈ I do from [j] := Rj,i

for j ∈ I do tmp[j] := Rj,i

if ∃j ∈ I : tmp[j].shoot [s][i]	me.heal [s][j] ≥ 3
then return tmp[j].prev
select max ∈ A such that ∀j ∈ A : from [max ].tag � from[j].tag ≥ 0
where A = {j ∈ I : ∀k ∈ I : from [k].shoot [z][j]	 from [j].heal [z][k] < 6

where z = from[j].ss}
me.prev ,me.value ,me.tag ,me.ss :=
me.value , from [max ].value , from [max ].tag , s

for j ∈ I do Ri,j := me
(Read only) return me.value
for j ∈ I, s ∈ {0..1} do

if me.shoot [s][j]	 from [j].heal [s][i] < 6
then me .shoot [s][j]⊕ := 1

select t ∈ tagtype such that t�me.tag ∈ {1, . . . , n} ∧ t ≡ i (mod n)
me.value ,me.tag := v, t
for j ∈ I do Ri,j := me

end

FIGURE 7.3. Construction 3
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while each read from Rj,i is replaced by a read from Rj . The result is a solu-
tion to the problem of implementing a multi-user variable from single-writer
multi-reader variables, since each of its histories corresponds to a history of
Construction 3 in which all writes of a parallel loop happen to be consecu-
tive events. The time complexity is still constant, while the space complex-
ity is sizeof (shared ) = 2 × sizeof (abs) + 16n + o(n). The prev field can be
made redundant by letting an aborting operation return tmp[j].value instead
of tmp[j].prev . This can be proven correct by reformulating claim 7.9 and the
Precedence part of lemma 7.11. (The idea is that the value returned by a in
claim 7.9 is then the value of c or the value propagated by c, and a completely
contains the part of c up to c.p).

The second projection is more involved, but yields a large space savings.
Assume that only user 0 executes Write operations. Then all shoot counters of
the remaining users, as well as all heal counters heal [0..1][1..n− 1], remain 0,
and can therefore be omitted. The prev field of the Read-only users will never
be used and can also be omitted. Furthermore, 0 is easily seen to be always
alive and therefore user 0 needs neither heal counters nor the shoot-selector ss .
User 0 also never aborts and can always choose max := 0.

By corollary 7.16, and because new tags are always chosen to be 0 (mod n),
only tags {−10n,−9n,−8n, . . . , 9n, 10n} ever occur, and n can be factored out.

The result of removing all these redundancies is shown in figure 7.4 as Con-
struction 4.

The space complexity (taking into account possible savings) is 2×sizeof (abs)+
O(n) for the shared variables of user 0, and sizeof (abs) + O(1) for the shared
variables of the remaining users. This space complexity is the same as that of
[9], and, apart from the data field used in the shared variables of Read only
users, also the same as that of [14, 13, 17].

7.7 Conclusion

Our construction shows that shared memory can be implemented, using repli-
cation, from simple bounded memory cells, with only a small constant factor
increase in access time.

To this end, the unbounded solution of Vitányi and Awerbuch, for a long
time the only recognized correct solution, is refined by adding a powerful, in
itself unbounded, shooting mechanism. This mechanism allows slow, potentially
confused operations to safely abort, and allows the remaining operations to
interpret the unbounded timestamps of Vitányi and Awerbuch as bounded
quantities. The end result follows by showing that the shooting mechanism
itself is easily bounded.
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type shared : record
value ,prev : abstype
tag : −10..10
ss : 0..1
shoot ,heal : array[0..1][0..n− 1] of −4..9

end

procedure Write(i, v)
var j : I

from : array[0..n− 1] of shared
static me : shared

begin
for j ∈ I do from [j] := Rj,i

me.prev := me .value
for j ∈ I do Ri,j := me
for j ∈ I, s ∈ {0..1} do

if me.shoot [s][j]	 from [j].heal [s][i] < 6
then me .shoot [s][j]⊕ := 1

me.value ,me.tag := v, (me.tag + 10) mod 21− 10
for j ∈ I do Ri,j := me

end

procedure Read(i)
var j : I

s : 0..1
from ,tmp : array[0..n− 1] of shared
static me : shared

begin
s := 1−me .ss
me.heal [s][0] := R0,i.shoot [s][i]
Ri,0 := me
for j ∈ I do from [j] := Rj,i

tmp[0] := R0,i

if tmp[0].shoot [s][i]	me.heal [s][0] ≥ 3
then return tmp[0].prev
select max ∈ A such that ∀j ∈ A : from [max ].tag � from[j].tag ≥ 0
where A = {0} ∪ {j ∈ I : from [0].shoot [z][j]	 from [j].heal [z][0] < 6

where z = from [j].ss}
me.value ,me.tag ,me.ss := from[max ].value , from [max ].tag , s
for j ∈ I do Ri,j := me
return me.value

end

FIGURE 7.4. Construction 4; single to multi-reader
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8
Binary Snapshots

8.1 Introduction

Consider a concurrent shared memory system. A snapshot memory object
shared between n processes is a vector of n memory cells, one ‘owned’ by each
process. All processes can independently and concurrently write to (update) the
cell they own, and all processes can ‘instantaneously’ collect (scan) all values
in the vector in a single operation.

The problem of implementing a wait-free atomic snapshot object was inde-
pendently proposed and solved by Anderson [6, 7, 8] and Afek et al. [1]. An-
derson gives an exponential time1 solution to this problem using single-writer
multi-reader registers, and also considers the multi-writer case in which more
than one process may update a particular cell. In his solution for the multi-
writer case he uses the single-writer snapshot object as a primitive, so his
solution does not rely on multi-writer multi-reader registers. Afek et al. give a
polynomial time implementation of a single-writer atomic snapshot object, also
using single-writer multi-reader registers. They also consider the multi-writer
case, but give a solution using multi-writer multi-reader registers instead.

The atomic snapshot memory object is a powerful tool to construct other
atomic wait-free objects, for instance counters, logical clocks, or bounded con-
current time-stamp schemes. Aspnes and Herlihy [3] give a general method to
convert a sequential specification of a shared memory object that satisfies cer-
tain constraints to a wait-free implementation of that object using an atomic
snapshot memory object as a primitive. They also give a a polynomial-time
implementation of a wait-free atomic snapshot object.

The main question remains whether it is possible to deterministically imple-

1In the literature on this subject the time complexity is usually measured by
the number of shared register accesses per operation as a function of the number of
processes.
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ment an atomic snapshot object with single-writer multi-reader registers such
that the time complexity of both the update and the scan operations is linear.
Much research has focused on affirming this, by imposing certain restrictions
on the applicability of the solutions. In [12], Kirousis et al. present a linear-
time solution for the case in which no two scans ever overlap. Dwork et al. [9]
introduce the weaker time-lapse snapshot object, and give a linear time im-
plementation of this object. Time-lapse snapshots satisfy the same properties
atomic snapshots do, except that the former allow concurrent scans to contra-
dict each other. In [11], Israeli et al. present linear-time implementations for
either the update or the scan operations, or for unbalanced systems in which
the number of updaters is substantially smaller than the number of scanners,
or vice versa. Finally, Attiya et al. [4] introduce the lattice agreement deci-
sion problem and show that a solution to this problem can be converted to a
wait-free atomic snapshot implementation.

In this chapter we take a similar approach, and reduce the general atomic
snapshot problem to a simpler one. We present a bounded, linear time con-
struction of a wait-free implementation of the general atomic snapshot object
from an atomic wait-free binary snapshot object (where each cell can contain
only two values) and a small amount of safe and regular single-writer regis-
ters. Thus the search for an efficient atomic snapshot implementation may be
restricted to the binary case.

We will use a proof technique proposed in [5], also used in [14] to prove the
correctness of some atomic register constructions. The technique is a derivation
of Lamport’s system as described in [13], where his two precedence relations
precedes and can affect are replaced by a single interval order. We first present
the model in Section 8.2, then we state the atomic wait-free snapshot problem
in Section 8.3. The protocol is presented in Section 8.4, and is proven correct
in Section 8.5.

8.2 The Model

A concurrent shared memory system is a collection of sequential processes
communicating asynchronously through shared memory data structures. At
any time a process is executing at most one action. A process can at any time
decide to start a new action when it is idle, or to finish an ongoing action. The
start time of an action a is denoted by s(a) and the finish time by f(a).

We model an execution of the shared memory system by a tuple 〈A,→〉,
where A is the set of all executed actions ordered by → such that a precedes b,
a→ b, if f(a) < s(b). We require for any execution 〈A,→〉 that for any a ∈ A
there are only a finite number of actions b ∈ A with ¬(a → b). This way we
require an execution to start at some point in time, rather than extending into
the infinite past [13, 5]. With this definition,→ is a special kind of partial order
called an interval order (i.e. a transitive binary relation such that if a→ b and
c → d then a → d or c → b). Now we have abstracted away from the actual
time an action occurred, and we can specify the behaviour of actions involving
access to the shared memory in terms of the interval order.

If one wishes to implement a certain compound shared memory object, one
first assumes a set of primitive shared memory objects used in the implemen-
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tation. Every operation on the compound object is implemented by a protocol
which invokes actions on these primitive objects. Using the compound object
will result in an implementation execution. Since every operation on the com-
pound object is implemented by a sequence of actions on the primitive objects,
an implementation execution induces a basic execution 〈A,→〉 on the shared
memory system. In an implementation execution we model an operation as the
set of actions it invokes. The implementation execution itself is modeled by a
tuple 〈O, o→〉, where O contains all operations invoked during the execution,
and where for operations A, B ∈ O, A o→ B iff all actions a ∈ A precede all
actions b ∈ B in 〈A,→〉.

8.3 Atomic Snapshot Memories

A snapshot memory object on n processes is a vector of n memory cells. A
process Pi can both write a new value to the i-th cell in the vector or instanta-
neously collect all values in the vector in a single operation. In the first case it
performs an update-operation, in the latter case it performs a scan-operation.

We require our implementation to be wait-free to allow maximal concurrency,
and failure-resilience in the case of crash-failures. An implementation is wait-
free if and only if all update and scan operations performed by any process will
complete in an a priori bounded number of steps, regardless of the behaviour
of the other processes.

Secondly, we require our implementation to be atomic. This means that all
operations must appear to take effect at one instant of time during the actual
time the operation executed2. This allows us to ‘shrink’ the actual execution
interval of an operation to a point, and we require a scan to return the values
written by the most recent preceding updates. The next paragraph formalises
this.

Let O be the set of all scan and update operations invoked in an implemen-
tation execution 〈O, o→〉 of a snapshot object. Assume for ease of presentation
that O includes n initialising updates, one per processor, that precede all other
operations in O. The implementation of an atomic snapshot object is correct
if for any of its executions 〈O, o→〉 we can extend o→ to a total order o=⇒ such
that for all scan operations S ∈ O, S returns for any cell i the value written
by the last update Ui ∈ O executed by Pi preceding S in o=⇒.

8.4 The Solution

In the next two sections we give our implementation of the n process wait-
free atomic snapshot object. The architecture describes all primitive shared
memory objects used by the protocols—one for each type of operation on the
shared memory object. The architecture also specifies the initial values of the
primitive objects, the operations each process is allowed to perform on them,
and the type of values it holds.

2Although here we refer to the global time model for its more intuitive appeal, we
will actually prove atomicity by linearization (cf. [13], and the previous section).
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The intuition behind our implementation is quite straightforward: Suppose
update operations of Pi write the new value alternately to two registers val i[0]
and val i[1] (this idea was independently put forward by Haldar and Vidyasankar [10]),
after which they use an update on the binary snapshot to inform the scans of
the position they wrote to. A scan first performs a scan on the binary snapshot,
and tries to read the values from the registers val i at the positions returned
by the binary scan. As later updates may overwrite values before they are read
by a concurrent scan, updates perform a scan operation as well, the result of
which they write in the register view i. A scan uses a handshaking mechanism
to detect overwriting updates, in which case it copies the view written by an
interfering update.

8.4.1 The Architecture

Our implementation of an n process atomic snapshot memory—with cells of
type T—will use one n process binary atomic snapshot object with opera-
tions B-Update i and B-Scani, performed by process Pi. Each cell of this binary
snapshot object is initially 0. In addition to this, our n-process atomic snapshot
protocol will use the following shared registers. For each i ∈ {1, . . . , n}:

• 2 safe registers of type T , val i[0] and val i[1], written by process Pi and
read by all. Initially, val i[1] may be arbitrary, but val i[0] must be ini-
tialised to the desired initial value of cell i of the snapshot vector.

• 1 regular register, view i (an n-value vector with elements of type T ),
written by process Pi and read by all, initially arbitrary.

• for each j ∈ {1, . . . , n}: a safe bit cij (the ‘complement’-bit), an atomic
bit sij (the ‘start’-bit) and a regular bit eij (the ‘end’-bit). All written
by process Pi, read by process Pj and initially 0.

8.4.2 The Protocols

Each of the n processes Pi can execute both updates and scans according to
the following protocols

Procedure Update i(value)
b := 1− b
write val i[b]← value
B-Update i(b)
for j ∈ {1, . . . , n} do

write sij ← (read cji)
write view i ← Scani

for j ∈ {1, . . . , n} do
write eij ← sij

Procedure Scani

for j ∈ {1, . . . , n} do
write cij ← 1−(read sji)

b[1..n] := B-Scan i

for j ∈ {1, . . . , n} do
read v[j]← val j [b[j]]
if cij = (read sji) = (read eji)
then return (read view j)

return v[1..n]

The Update-protocol uses local variables j (ranging over {1, . . . , n}), and b,
a static bit variable initially 0, which retains its value in between successive
invocations of the protocol. The Scan-protocol uses local variables b (an n-bit
vector), j (ranging over {1, . . . , n}), and v (an n-value vector with elements of
type T ).



8.4. The Solution 116

A few words on the programming notation are in order. Some assignments
involve both a write and a read or Scan. These are to be executed sequentially,
the read/Scan first and then the write. E.g. ‘write s ← (read c)’ is shorthand
for ‘ read t ← c; write s ← t’. This should not to be confused with read-
modify-write operations that execute atomically. We assume that the value
of a shared register written by a process also belongs to that process’s local
state. This means that the value of for instance the shared variable cij in the
Scan-protocol need not be explicitly read. The return statements in the Scan-
protocol serve to return the indicated value to the caller, and to terminate the
protocol immediately.

The for loops are indexed over a set to make clear that the n loop bodies
may be interleaved arbitrarily. Since the registers accessed in the loop bodies
are all disjoint, such a for statement can also be interpreted as a do-in-parallel
construct. Thus the parallel time complexity [2] of snapshots equals the parallel
time complexity of binary snapshots (up to a constant factor).

8.5 Proof of Correctness

To prove correctness we assume the usual correctness conditions on the read
write registers that we use in our implementation. We also assume the correct-
ness of the atomic binary snapshot object used by our implementation. I.e. in
an execution 〈A,→〉 we assume there exists a total order ⇒ extending → such
that every binary scan BS returns for bit i the value written by the last binary
update BUi executed by Pi preceding BS in ⇒.

We write U for Update and S for Scan. For operation O ∈ {U, S, BU, BS},
Ox

i denotes the x-th execution of O by process Pi, including scans Si that
are invoked by some update Uy

i . These scans are sometimes written as US y
i .

Note that BSx
i is invoked by Sx

i , and BUx
i is invoked by Ux

i . O contains all
invocations Sx

i and Ux
i for i ∈ {1, . . . , n} and x ≥ 0. Note that this also includes

updates U0
i that wrote the initial values for the cells i, and scans USx

i invoked
by updates Ux

i .
If scan Sx

i sees cij = (read sji) = (read eji), then process Pj (or some update
Uj) is said to interfere with Sx

i . A scan is direct if no process interferes with
it. Sx

i contains Sy
j iff s(Sx

i ) < s(Sy
j ) < f(Sy

j ) < f(Sx
i ). The next lemma shows

that direct scans will return correct values.

Lemma 8.1 Assume Pj does not interfere with some scan Sx
i , and let Sx

i scan

the value b[j] updated by some U y
j , i.e. BUy

j ⇒ BSx
i ⇒ BUy+1

j . Then the value
val j [b[j]] read by Sx

i was written there by Uy
j .

Proof. Assume scan Sx
i does not see cij = (read sji) = (read eji) and that BSx

i

scanned the value b[j] for cell j updated by BU y
j , i.e. BUy

j ⇒ BSx
i ⇒ BUy+1

j .
The write of val j [b] by Uy

j precedes BUy
j in →, and the read of val j [b] by Sx

i

follows BSx
i in →. Since BUy

j ⇒ BSx
i , we have ¬(BSx

i → BUy
j ), so the write

of val j [b] by Uy
j precedes the read of it by Sx

i . So if Sx
i does not read the value

written by Uy
j it must be concurrent with or occur after a write to val j [b] by a

later update Uz
j Note that this later update cannot be U y+1

j , since this update
will write to val j [1− b].

Suppose the read of val j [b] is concurrent with or occurs after a write to it
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by an update Uz
j , z > y + 1. Now BSx

i ⇒ BUy+1
j , so by a similar argument as

before the read of cij by Uy+1
j occurs after the write of cij by Sx

i in →. Uy+1
j

writes the value of cij to sji and later to eji before Sx
i reads these, since the

read of val j [b] by Sx
i is concurrent with or occurs after a write to it by update

Uz
j . Now the values of cij , sji and eji must be equal, and as long as Sx

i does
not finish, cij will not change. This implies that any later writes to sji and eji

will not change their value and thus, as they are atomic and regular, Sx
i should

see cij = (read sji) = (read eji), a contradiction. 2

The next lemma shows that scans that cannot collect the values directly due
to interfering updates can copy the result from such an interfering update. This
interfering update will have stored the result, called a view, of a direct scan
contained in the interfered scan.

Lemma 8.2 If process Pj interferes with scan Sx
i , then the view Sx

i copied from
view j is the result of a direct scan Sz

k , contained in Sx
i .

Proof. Since Sx
i sees cij = (read sji) and sji is atomic and Sx

i sets cij =
1−(read sji), there must be an update Uy

j that changed sji after Sx
i read sji.

This implies that the scan USy
j of Uy

j started after Sx
i did. Note that after Uy

j

changes sji, eji holds the old value of sji which is unequal to the current value
of sji. Then if Sx

i also sees cij = (read eji), Uy
j must have written eji before or

concurrent with the read of eji by Sx
i . This implies that Sx

i reads view j after
the result of USy

j was written to it by Uy
j . This also shows that Sx

i contains
this USy

j . Note that view j must be a regular register, since views written by
later updates may interfere with the read of the view by Sx

i . 2

We conclude by proving the correctness of our implementation of the atomic
snapshot object. The implementation is obviously wait-free.

Theorem 8.3 For any execution 〈O, o→〉 there exists a total extension o=⇒ of
o→ such that any scan Sx

i with Uy
j

o=⇒ Sx
i

o=⇒ Uy+1
j returns for cell j the value

written by Uy
j .

Proof. For direct scans Sx
i , let β(Sx

i ) = BSx
i . For indirect scans Sx

i that
copied the view collected by a direct scan Sy

j (see lemma 8.2), let β(Sx
i ) = BSy

j .
Finally, for updates, let β(Ux

i ) = BUx
i .

For any two A, B ∈ O, define A o=⇒ B if β(A) ⇒ β(B). Note that neither
A o=⇒ B nor B o=⇒ A iff β(A) = β(B). By lemma 8.2, β(S) occurs inside S
for any indirect scan S. This implies that if A o→ B we have β(A)⇒ β(B) and
thus A o=⇒ B. So o=⇒ extends o→. Now extend o=⇒ to a total order.

If for some scan Sx
i , Uy

j
o=⇒ Sx

i
o=⇒ Uy+1

j , then BUy
j ⇒ β(Sx

i ) ⇒ BUy+1
j

by the definition of β and o=⇒ (Note that if β(A) = β(B), then both A and
B are scans). If Sx

i is a direct scan, then β(Sx
i ) = BSx

i and by lemma 8.1 the
theorem is proved. If Sx

i is not a direct scan, then it copied the result from a
direct scan Sz

k , and thus β(Sx
i ) = BSz

k . But again by lemma 8.1 the theorem
is satisfied. 2
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8.6 Future Research

Further research might be directed at finding an implementation of atomic
binary snapshots with subquadratic or linear time complexity.

It is interesting to note that all atomic snapshot implementations we are
aware of use at least O(n) registers with O(nv) size (where v is the maximal
number of bits contained in any cell of the snapshot object). However, Dwork
et al. [9] have shown that for time-lapse snapshots O(n2) registers with size
O(n + v) suffice. It is an interesting open question whether registers with size
O(nv) are necessary to implement atomic snapshot objects.
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9
On Update-Last Schemes

9.1 Introduction

Let X = X1 × · · · × Xn be the product of n domains, one for each i ∈ I =
{1, . . . , n}. Elements of the Xi are called labels, and those of X label vectors.
We say that two label vectors l and l′ are i-equivalent, l ≡i l′, whenever ∀j 6=i :
lj = l′j .

Definition 9.1 An Update-Last scheme is a partial function last : X → I
with a non-empty domain U ⊆ X such that

∀ l ∈ U, i ∈ I ∃ l′ ∈ U : l ≡i l′ ∧ last(l′) = i,

In this chapter we derive exact bounds on the domain sizes |Xi| that allow
the existence of such a scheme.

One can think of an Update-Last scheme as providing a method whereby each
of a set of n objects can be made a ‘leader’ by choosing its label appropriately.
The objects can be either active entities that carry out the label-inspection
and choice-making themselves, or passive objects in some system that wants
to keep track of which object is special. The vector of labels can be seen as a
way of storing an index in a distributed fashion.

The above formalization is intended to capture the essence of such methods,
which may appear in different forms and shapes. The possibility of last not
being total accommodates methods where not all possible label combinations
can arise.

The main motivation for this work comes from the implementation of wait-
free multi-writer registers from single-writer ones. Update-Last schemes imme-
diately provide for serial implementations that work correctly as long as no two
operations overlap: a writer tags each new value with a label that shows this
value to be the last-written or current one, while a reader simply collects all
value-label pairs and returns the value of the last writer. Conversely, any serial
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implementation of a multi-writer register where the number of writers does
not exceed the number of values induces an Update-Last scheme. The exact
bounds proved here on label domain sizes thus yield a lower bound on the space
complexity of real concurrent implementations. The multi-writer implementa-
tion of Israeli and Shaham [4] is the first optimal one in the sense of achieving
polynomial label domain size, i.e. logarithmic label size when measured in bits.

9.2 Related Work

Israeli and Li [3] introduced time-stamp schemes as a method of representing
a total order on a dynamic set of items, and proved a lower bound of 2n− 1 on
the size of the label domain. Li and Vitanyi [5] present an Update-Last scheme
where each Xi is of size n, and argue that for the purpose of implementing
multi-writer registers, one does not need the full functionality of time-stamp
schemes.

The unlabeled (non-indexed) case, where last gets as input a set of n different
labels from a single domain, and maps to one of them, was considered by Cori
and Sopena [2]. They proved a tight bound of 2n − 1 on the size of the label
domain. The proof of our main theorem was in part inspired by their proof.

Another surprising application is in the simulation of a DFA by a (fully-
connected) asynchronous cellular automaton [1]. Such an ACA has one node
for each letter in the alphabet, which is activated when that letter appears in
the input. Upon activation, the node changes its state according to the states
of all its neighbours. In the simulation, part of a node’s state is the state of
the simulated DFA, and an Update-Last scheme allows an activated node to
identify the node holding the current DFA state.

9.3 Characterizing Update-Last schemes

Theorem 9.2 There exists an Update-Last scheme on label vector space X iff
∑

i∈I 1/|Xi| ≤ 1.

Proof.

⇒ Let Ui be U/ ≡i and U ′ be the disjoint union of all Ui. Each element in
Ui is an equivalence class of label vectors differing only in component i. Such
a class can also be thought of as a label vector in which component i has been
blanked.

For a fixed i, consider the number of pairs (l, x) ∈ U × Ui with l ∈ x. There
is one such pair for each l ∈ U and hence |U | in total. On the other hand, for

x ∈ Ui, there are at most xi
def
= |Xi| such pairs. This gives |U | ≤ |Ui|xi, or

1/xi ≤ |Ui|/|U |. By definition of U ′, we also have that |U ′| = ∑

i∈I |Ui|. Thus,
∑

i∈I

1/xi ≤
∑

i∈I

|Ui|/|U | = |U ′|/|U |.

Given that last : X → I is an Update-Last scheme, there exists a function
new : U ′ → U satisfying

∀x ∈ Ui : new(x) ∈ x ∧ last(new(x)) = i.
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Note that new is invertible (one-one), since new−1(l) is just the equivalence
class of l w.r.t. ≡last(l). Hence |U ′| ≤ |U | and the result follows.
⇐W.l.o.g. assume that Xi = {0, 1, . . . , xi− 1}. Given that

∑

i∈I 1/|Xi| ≤ 1,
we can partition the [0, 1) interval into n disjoint half-open intervals such that
i’s interval has length at least 1/xi. Now define the total function last(l) to
be the index whose interval contains (

∑

i∈I li/xi) mod 1 (x mod 1 denotes the
fractional part of x). To see that last is an Update-Last scheme, note that for
any l ∈ U and i ∈ I , the set {last(l′) : l′ ≡i l} consists of xi points evenly
spread around the [0, 1) interval and thus necessarily intersects i’s interval. 2

Putting yi = 1/|Xi|, the condition of the theorem becomes
∑

i∈I yi ≤ 1.
By standard convexity arguments,

∏

i∈I yi is maximal (and hence
∏

i∈I |Xi|
minimal) under this condition when all yi equal 1/n. This proves the following
lower bound on the number of label vectors:

Corollary 9.3 An Update-Last scheme with label vector space X satisfies
∏

i∈I |Xi| ≥ nn.

This proves the optimality of the construction presented in [5], which is
essentially an Update-Last scheme with |Xi| = n, i = 1, . . . , n.

9.4 Further Work

There are several directions in which Update-Last schemes can be generalized.
One would be a scheme where i can choose its label in a way that makes j
become last, for all i, j ∈ I . Theorem 1 shows a way to do this when all |Xi|
equal n, but in general the condition

∑

i∈I 1/|Xi| ≤ 1 will not be sufficient any
more.

More interesting, perhaps, is the study of general schemes where i can choose
its label so as to satisfy some constraint on a function of all the labels, where
this function might represent the state of a shared object.
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Samenvatting (Dutch)

Het proefschrift bundelt een kleine verscheidenheid aan studies binnen de the-
oretische informatica. De meeste verhandelen over zogenaamde algorithmen,
d.w.z. stapsgewijze methoden voor het oplossen van een probleem. U kunt hi-
erbij denken aan de methode die U op de lagere school heeft geleerd voor het
uitvoeren van staartdelingen. Het aftrekken van een enkel cijfer van een andere
is dan een goed voorbeeld van een (primitieve) stap. Het aftrekken van de hele
noemer van een gedeelte van de teller zou dat niet zijn, daar deze operatie meer
moeite zal kosten naarmate de noemer groter wordt (uit meer cijfers bestaat).
Het idee van een stap is dat het een constante hoeveelheid werk vertegenwo-
ordigt, onafhankelijk van de mogelijke grootte van het probleem.

De aard van de stappen waarin een algorithme geformuleerd is kan zeer
sterk uiteenlopen, evenals de ‘werkomgeving’ waarbinnen het uitgevoerd dient
te worden. De verschillende hoofdstukken geven een aardige indruk van de
mogelijke variatie.

Het interessante vraagstuk bij veel problemen is hoeveel middelen er voor
nodig zijn om het op te lossen. De 2 meest bekeken middelen zijn tijd en
geheugen(ruimte). Zo gebruikt de klassieke staartdeling bijvoorbeeld een ho-
eveelheid tijd (aantal stappen) en geheugen (papieroppervlak) die proportion-
eel is met zowel het aantal cijfers van de teller als van de noemer. We zeggen
dan: de tijds (of geheugen) complexiteit van staartdelen is van de order het
produkt van aantal cijfers in noemer en aantal cijfers in teller. Een complex-
iteits maat zegt altijd hoe het gebruik van middelen toeneemt met de grootte
van de probleem instantie.

Naast geheugen en tijd komen ook minder bekende middelen aan bod, zoals
energiegebruik in electronische circuits.

Zelfs de grootte van de oplossing kan men als te minimaliseren ‘middel’ zien,
ingeval die oplossing niet uniek is. Zo wordt in Hoofdstuk 2 het volgende prob-
leem bestudeerd: gegeven een verzameling woorden w1, w2, . . . , wn, zoek een
woord w waar al alle wi deel van uit maken. Zo zijn bijvoorbeeld ‘stoel’ en
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‘kist’ deelwoorden van ‘kistoel’. Onder een algemeen aanvaarde assumptie is
het niet mogelijk om altijd het kortst mogelijke superwoord in redelijke tijd
te vinden. Om precies te zijn, is er voor willekeurige k geen algorithme, dat
van een verzameling woorden van totale lengte m altijd het kortste superwoord
oplevert binnen mk stappen.

Er is wel een bekend algorithme dat in iets als m3 stappen een redelijk kort
superwoord weet te vinden. Dit algorithme wordt wel gebruikt bij het ‘DNA-
sequencen’, het bepalen van de exacte basen-volgorde van DNA-moleculen.
Voorheen was niet bekend of de lengte van superwoorden gevonden met dit
algorithme wel begrensd is tot een constant aantal keer de kortst mogelijke
lengte. In dit hoofdstuk wordt afgeleid dat dit inderdaad zo is, en wel met een
grens van 4 maal de kortste.

In het volgende hoofdstuk staat de geheugen-complexiteit van ‘plaatjes inkleuren’
centraal. Er wordt een algorithme afgeleid dat dit probleem met een constante
hoeveelheid geheugen (interne ruimte) oplost, in tegenstelling tot de in praktijk
(b.v. tekenprogramma’s) gebruikte methoden die geheugen proportioneel in de
grootte van het in te kleuren figuur nodig hebben. Bij gebruik van slechts een
constante hoeveelheid geheugen is de werkomgeving als een gigantisch doolhof
in de kleuren wit en zwart, waarbij de hele witte omgeving van de startpositie
(die dus begrensd is door zwarte stukken) zwart geverfd moet worden.

Hoofdstuk 4 gaat vervolgens in op de schakel-energie van circuits die de
binaire (2 waardig; 0 of 1) of-functie (en generalisaties daarvan) berekenen op
n inputs. Door een kleine redundantie in de hoeveelheid schakel-elementen kan
de hoeveelheid bedrading die omschakelt bij verandering van de inputs met een
factor l gereduceerd worden, waarbij l het aantal cijfers van n is.

In Hoofdstuk 5 wordt een nieuw soort computer voorgesteld, waarvan het
geheugen bestaat uit ‘cellen’ die elkaar aan kunnen wijzen, elke cel wijst bijvoor-
beeld naar 3 andere, met een rode, groene, en blauwe wijzer. Op elk moment van
de berekening is er een speciale cel van waaruit de andere ge-adresseerd kun-
nen worden. Niet alleen enkele cellen kunnen ge-adresseeerd worden, ook kan
vanuit een cel alle cellen die er naar wijzen, bevoorbeeld met de groene wijzer,
tegelijk ge-adresseerd worden. Op een verzameling ge-adresseerde cellen kunnen
allerlei operaties worden uitgevoerd, zoals het creëren van nieuwe cellen, of het
omleggen van wijzers. Dit blijkt een bijzonder krachtige soort computer op te
leveren, die bijvoorbeeld in een relatief klein aantal stappen het schaakspel zou
kunnen oplossen (hoewel het aantal cellen wat in die berekening aangemaakt
wordt wel verschrikkelijk groot wordt.)

In de laatste 4 hoofdstukken komen communicatie protocollen aan bod, die
verschillende processen de indruk geven dat ze gezamenlijk één geheugen delen.
Wat de een erin schrijft kan een ander dan lezen. Het begint heel eenvoudig
met een enkel bit (2-waardig geheugenelement) dat door slechts een proces kan
worden geschreven en door een ander gelezen. Vanuit deze bouwstenen kunnen
geheugens met veel meer mogelijkheden worden gebouwd: meer waardes, meer
lezers, meer schrijvers, enz. Het unieke van deze protocollen is dat ze wachtvrij
zijn, wat wil zeggen dat het ene proces nooit op het ander hoeft te wachten
om zijn geheugen-operatie te kunnen voltooien. Er kan rustig tegelijkertijd in
gelezen en geschreven worden, zonder dat er onzin uit komt.
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